#### **COMUNE DI VERRONE**



# RESTAURO CONSERVATIVO DI UNA PARTE DEL CASTELLO DI VERRONE DA ADIBIRSI A NUOVA SEDE DEL MUNICIPIO.

RESTAURO E RIPRISTINO FUNZIONALE DELL'ADDIZIONE OTTOCENTESCA AD USO UFFICI, ARCHIVIO E DEPOSITI. II° LOTTO.

## PROGETTO DEFINITIVO-ESECUTIVO

### LEGGE 10

| RIFERIMENTI DOCUMENTO |                              |        |               |  |  |  |  |
|-----------------------|------------------------------|--------|---------------|--|--|--|--|
| DOCUMENTO             |                              | PAGINE | DATA          |  |  |  |  |
| 16                    | <b>CUP</b> – H44F18000050004 | 45     | Novembre 2018 |  |  |  |  |

| 0 - Emissione | Novembre 2018 | Emissione             | Geom. Sega Davide | Ing. E. Giletti | Arch. N. Poletti |
|---------------|---------------|-----------------------|-------------------|-----------------|------------------|
| REVISIONE N°  | DATA          | DESCRIZIONE REVISIONE | REDATTO           | APPROVATO       | AUTORIZZATO      |

#### DATI PROGETTISTA

Arch. Maria Nefeli Poletti Ing. Emanuele Giletti

Studio G.P.sas

Str. Superga 136 - 10132 Torino

Tel.: 011 8997408

email: studio.gpsas@tin.it

COLLABORATORI: Geom. Davide Sega

Geom. Sara Pasotto

## Comune di Verrone - (BI)

## RELAZIONE TECNICA

Attestante la rispondenza alle prescrizioni in materia di contenimento del consumo energetico degli edifici

| EDIFICIO:    | RESTAURO CONSERVATIVO DI UNA PARTE DEL CASTELLO DI VERRONE DA ADIBIRSI A NUOVA SEDE DEL MUNICIPIO. RESTAURO E RIPRISTINO FUNZIONALE DELL'ADDIZIONE OTTOCENTESCA AD USO UFFICI, ARCHIVIO E DEPOSITI. II° LOTTO. CIG: ZAB245CD0E - CUP: H44F18000050004 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INDIRIZZO    | Via Castello 6, Verrone (BI)                                                                                                                                                                                                                          |
| COMMITTENTE: | Comune di Verrone                                                                                                                                                                                                                                     |
| PROGETTISTA: | ing. Emanuele Giletti                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                       |
|              | Firma:                                                                                                                                                                                                                                                |

Egregio Signor Sindaco del comune di **Verrone**, (**BI**) e per conoscenza all'Ufficio Tecnico del comune di **Verrone**, (**BI**)

## RELAZIONE TECNICA DI CUI AL COMMA 1 DELL'ARTICOLO 8 DEL DECRETO LEGISLATIVO 19 AGOSTO 2005, N. 192, ATTESTANTE LA RISPONDENZA ALLE PRESCRIZIONI IN MATERIA DI CONTENIMENTO DEL CONSUMO ENERGETICO DEGLI EDIFICI

#### Nuove costruzioni, ristrutturazioni importanti di primo livello, edifici ad energia quasi zero

Un edificio esistente è sottoposto a ristrutturazione importante di primo livello quando l'intervento ricade nelle tipologie indicate al paragrafo 1.4.1, comma 3, lettera a) dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005.

| 1 INFORMAZIO                                  | ONI GENERALI                                            |                              |                                                                           |    |  |
|-----------------------------------------------|---------------------------------------------------------|------------------------------|---------------------------------------------------------------------------|----|--|
| Comune di                                     | Verrone                                                 |                              | Provincia                                                                 | ВІ |  |
| Progetto per la r                             | realizzazione di                                        |                              | <del></del>                                                               |    |  |
| RESTAURO CO<br>DEL MUNICIPIO<br>UFFICI, ARCHI | ONSERVATIVO DI UNA                                      | ISTINO FUNZIONALE D<br>OTTO. | LO DI VERRONE DA ADIBIRS<br>DELL'ADDIZIONE OTTOCENT                       |    |  |
| Edificio publ                                 | olico                                                   |                              |                                                                           |    |  |
| X Edificio ad u                               | so pubblico                                             |                              |                                                                           |    |  |
| Sito in                                       | Via Castello 6                                          |                              |                                                                           |    |  |
| Mappale                                       | 166                                                     |                              |                                                                           |    |  |
| Sezione                                       |                                                         |                              |                                                                           |    |  |
| Foglio                                        | 4                                                       |                              |                                                                           |    |  |
| Particella                                    | 166                                                     |                              |                                                                           |    |  |
| Subalterni                                    |                                                         |                              |                                                                           |    |  |
| Richiesta Perme                               | esso di Costruire                                       | N                            | Del                                                                       |    |  |
| Permesso di Co                                | struire                                                 | N                            | Del                                                                       |    |  |
| Variante Permes                               | sso di Costruire                                        | N                            | Del                                                                       |    |  |
| decreto di cui all<br>categorie differe       | l'articolo 4, comma 1 de<br>enti, specificare le divers | el decreto legislativo 192   | ılla categoria di cui al punto 1.2<br>/2005; per edifici costituiti da pa |    |  |
| E.2 uffici e                                  |                                                         |                              |                                                                           |    |  |
| Numero delle ur                               | nità immobiliari                                        |                              |                                                                           |    |  |
| Soggetti coinvo                               | olti                                                    |                              |                                                                           |    |  |
| Committente                                   |                                                         |                              | Comune di Verrone                                                         |    |  |
| Progettista degli                             | i impianti termici                                      |                              | ing. Emanuele Giletti                                                     |    |  |
| Direttore dei lav                             | ori per la realizzazione                                | degli impianti termici       | ing. Emanuele Giletti                                                     |    |  |
| Progettista dei s                             | sistemi di illuminazione                                | dell'edificio                | ing. Emanuele Giletti                                                     |    |  |
| Direttore dei lave                            | ori dei sistemi di illumin                              | azione dell'edificio         | ing Emanuele Giletti                                                      |    |  |

#### 2 FATTORI TIPOLOGICI DELL'EDIFICIO

Seleziona gli elementi tipologici da fornire, al solo scopo di supportare la presente relazione tecnica:

- X Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali e definizione degli elementi costruttivi
- Prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare e definizione degli elementi costruttivi
- Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari

#### 3 PARAMETRI CLIMATICI DELLA LOCALITÀ

Gradi giorno (della zona d'insediamento, determinati in base al DPR 412/93) GG

Temperatura minima di progetto (dell'aria esterna norma UNI 5364 e succ agg.) K

Temperatura massima estiva di progetto dell'aria esterna secondo norma

304,3

265,3 304,3

## 4 DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI) E DELLE RELATIVE STRUTTURE

#### Climatizzazione invernale

| Unità immobiliare    | S [m <sup>2</sup> ] | V [m <sup>3</sup> ] | S/V  | Su [m <sup>2</sup> ] |
|----------------------|---------------------|---------------------|------|----------------------|
| Unità immobiliare 01 | 268,57              | 505,12              | 0,53 | 114,92               |

S Superficie disperdente che delimita il volume climatizzato

V Volume delle parti di edificio climatizzate al lordo delle strutture che li delimitano

S/V rapporto tra superficie disperdente e volume lordi o fattore di forma dell'edificio

Su superficie utile climatizzata dell'edificio

| Unità immobiliare    | Zona climatizzata | Tinv [°C] | φinv [%] |
|----------------------|-------------------|-----------|----------|
| Unità immobiliare 01 | Zona 1            | 20,0      | 50       |

Tinv Valore di progetto della temperatura interna invernale φinv valore di progetto dell'umidità relativa interna per la climatizzazione invernale

| Unità immobiliare    | Presenza contabilizzazione | Metodo |
|----------------------|----------------------------|--------|
| Unità immobiliare 01 |                            | -      |

#### Climatizzazione estiva

| Unità immobiliare    | S [m <sup>2</sup> ] | V [m <sup>3</sup> ] | Su [m <sup>2</sup> ] |
|----------------------|---------------------|---------------------|----------------------|
| Unità immobiliare 01 | 268,57              | 0,00                | 0,00                 |

S Superficie disperdente che delimita il volume climatizzato

V Volume delle parti di edificio climatizzate al lordo delle strutture che li delimitano

**Su** Superficie utile climatizzata dell'edificio

| Unità immobiliare    | Zona climatizzata | Test [°C] | φest [%] |
|----------------------|-------------------|-----------|----------|
| Unità immobiliare 01 | Zona 1            | 26,0      | 50       |

**Test** Valore di progetto della temperatura interna estiva **Pest** Valore di progetto dell'umidità relativa interna estiva

| Unità immobiliare                                                                                                                                                                                                                                                       | Presenza contab           | ilizzazione                      | Metodo                           |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------|----------------------------------|--|--|--|--|--|
| Unità immobiliare 01                                                                                                                                                                                                                                                    |                           |                                  | -                                |  |  |  |  |  |
| Informazioni generali e prescrizioni  Presenza di reti di teleriscaldamento/raffreddamento a meno di 1000 m [] Si [x] No                                                                                                                                                |                           |                                  |                                  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                         |                           |                                  | <del></del>                      |  |  |  |  |  |
| Se "sì" descrivere le opere edili ed impiantistiche previste necessarie al collegamento alle reti. Se non sono state predisposte opere inserire la motivazione:                                                                                                         |                           |                                  |                                  |  |  |  |  |  |
| Livello di automazione per il controllo, la<br>termici (BACS), classe (min = classe B<br>A                                                                                                                                                                              |                           |                                  | l'edificio e degli impianti      |  |  |  |  |  |
| Adozione di materiali ad elevata rifletter                                                                                                                                                                                                                              | nza solare per le cop     | erture: []Si [x]N                | lo                               |  |  |  |  |  |
| Valore di riflettenza solare 0                                                                                                                                                                                                                                          | > 0,65 per cop            | perture piane                    |                                  |  |  |  |  |  |
| Valore di riflettenza solare 0                                                                                                                                                                                                                                          | > 0.30 per cop            | perture a falda                  |                                  |  |  |  |  |  |
| Se "no" riportare le ragioni tecnico-economi                                                                                                                                                                                                                            | <br>che che hanno portato | al non utilizzo dei materiali ri | flettenti                        |  |  |  |  |  |
| La copertura esistente è in coppi e vi                                                                                                                                                                                                                                  | ene mantenuta ina         | Iterata                          |                                  |  |  |  |  |  |
| Adozione di tecnologie di climatizzazion                                                                                                                                                                                                                                | ne passiva per le cop     | erture []Si [x]N                 | lo                               |  |  |  |  |  |
| Se "no" riportare le ragioni tecnico-economic                                                                                                                                                                                                                           |                           |                                  |                                  |  |  |  |  |  |
| Adozione di misuratori d'energia (Energ                                                                                                                                                                                                                                 | y Meter) [] Si            | [x] No                           |                                  |  |  |  |  |  |
| Se "sì" descrizione e caratteristiche principa                                                                                                                                                                                                                          | li                        |                                  |                                  |  |  |  |  |  |
| Adozione di sistemi di contabilizzazione                                                                                                                                                                                                                                | diretta del calore        | [ ] Si [x] No                    |                                  |  |  |  |  |  |
| Adozione di sistemi di contabilizzazione                                                                                                                                                                                                                                | diretta del freddo        | [ ] Si [x] No                    |                                  |  |  |  |  |  |
| Adozione di sistemi di contabilizzazione                                                                                                                                                                                                                                | diretta dell'ACS          | [ ] Si [x] No                    |                                  |  |  |  |  |  |
| Se "no" riportare le ragioni tecnico-economic stato utilizzato:                                                                                                                                                                                                         | che che hanno portato     | al non utilizzo e definire qual  | e sistema di contabilizzazione è |  |  |  |  |  |
| Utilizzazione di fonti di energia rinnovabili per la copertura dei consumi di calore, di elettricità e per il raffrescamento secondo i principi minimi di integrazione, le modalità e le decorrenze di cui all'allegato 3, del decreto legislativo 3 marzo 2011, n. 28. |                           |                                  |                                  |  |  |  |  |  |
| Produzione di energia termica Indicare la % di copertura tramite il ricor consumi previsti per: Acqua Calda Sanitaria 0,0%                                                                                                                                              | so ad energia prodot      | tta da impianti alimentati d     | a fonti rinnovabili, dei         |  |  |  |  |  |
| Climatizzazione invernale, Acqua Calda                                                                                                                                                                                                                                  | Sanitaria, Climatizz      | azione estiva 0,0%               |                                  |  |  |  |  |  |
| Produzione di energia elettrica Indicare la potenza elettrica degli impiar Superficie in pianta dell'edificio a livello Potenza Elettrica P=(1/K)*S kW                                                                                                                  | del terreno S             | <u>m²</u>                        |                                  |  |  |  |  |  |

Adozione sistemi di regolazione automatica della temperatura ambiente singoli locali o nelle zone termiche servite

|          | •    |        |          |          |                  |                       |       |
|----------|------|--------|----------|----------|------------------|-----------------------|-------|
| $\alpha$ | ımr  | งเฉทะเ | $\alpha$ | CIIMAtiz | / <b>フ</b> つフ!へい | $\alpha$ inv $\alpha$ | rnala |
| ua       | HILL | лани   | uı       | climatiz | Zazivii          | _ 1117                | HIAIC |

#### [] Si [x] No

Adozione sistemi di compensazione climatica nella regolazione automatica della temperatura ambiente singoli locali o nelle zone termiche servite da impianti di climatizzazione invernale:

#### [] Si [x] No

Se "no" documentare le ragioni tecniche che hanno portato alla non utilizzazione

Valutazione sull'efficacia dei sistemi schermanti delle superfici vetrate sia esterni che interni presenti: (vedi allegati alla relazione tecnica)

Verifiche di cui alla lettera b) del punto 3.3.4 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005

Tutte le pareti opache verticali ad eccezione di quelle comprese nel quadrante nord-ovest/nord/nord-est: Valore di Massa superficiale

| Elemento edilizio | M Sup [Kg/m <sup>2</sup> ] | Limite [Kg/m <sup>2</sup> ] | Verifica |
|-------------------|----------------------------|-----------------------------|----------|
|                   |                            |                             |          |

#### Valore del modulo della trasmittanza termica periodica YIE

| Elemento edilizio | YIE [W/m²ĸ] | Limite [W/m <sup>2</sup> K] | Verifica |
|-------------------|-------------|-----------------------------|----------|
|                   |             |                             |          |

Verifiche di cui alla lettera c) del punto 3.3.4 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005

#### 5 DATI RELATIVI AGLI IMPIANTI

#### 5.1 Impianti termici

Impianto tecnologico destinato ai servizi di climatizzazione invernale e/o estiva e/o produzione di acqua calda sanitaria, indipendentemente dal vettore energetico utilizzato.

#### a) Descrizione impianto

Tipologia

#### **Autonomo**

Sistemi di generazione

#### Caldaia a gas

Sistemi di termoregolazione

#### Cronotermostato

Sistemi di contabilizzazione dell'energia termica

#### assenti

Sistemi di distribuzione del vettore termico

#### acqua

Sistemi di ventilazione forzata

Sistemi di accumulo termico

Sistemi di produzione dell'acqua calda sanitaria

| Sistemi di distribuzione dell'acqua calda sanitaria                                                                                                                                                                                                                                                                                                                                                                                           |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Trattamento di condizionamento chimico per l'acqua (norma UNI 8065)                                                                                                                                                                                                                                                                                                                                                                           |                        |
| Durezza dell'acqua di alimentazione dei generatori di calore                                                                                                                                                                                                                                                                                                                                                                                  |                        |
| 0,0 gradi francesi                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| Filtro di sicurezza                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| b) Specifiche dei generatori di energia                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
| Installazione di un contatore del volume di acqua calda sanitaria [] Si [x] No                                                                                                                                                                                                                                                                                                                                                                |                        |
| Installazione di un contatore del volume di acqua di reintegro dell'impianto                                                                                                                                                                                                                                                                                                                                                                  | [x] No                 |
| GENERATORE A COMBUSTIONE ESEMPI Caldaia a condensazione 16 kW ESEMPI - Caldaia a condensazione 16 kW Generatore di calore a biomassa SI X NO Combustibile utilizzato Metano Fluido termovettore Acqua Sistema di emissione (specificare bocchette/pannelli radianti/ radiatori/ strisce radianti/ te fredde/ventilconvettori/ altro Fluido termovettore)                                                                                      |                        |
| Valore nominale della potenza termica utile 16,0 kW                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| Rendimento termico utile (o di combustione per generatori ad aria calda) al 100% Pn                                                                                                                                                                                                                                                                                                                                                           | 98,0                   |
| Rendimento termico utile (o di combustione per generatori ad aria calda) al 30% Pn                                                                                                                                                                                                                                                                                                                                                            | 98,0                   |
| Nel caso di generatori che utilizzino più di un combustibile indicare i tipi e le percentuali d<br>combustibili                                                                                                                                                                                                                                                                                                                               | i utilizzo dei singoli |
| SCALDA ACQUA ISTANTANEO Generatore a energia elettrica_1 Combustibile utilizzato Energia elettrica Fluido termovettore Acqua                                                                                                                                                                                                                                                                                                                  |                        |
| Valore nominale della potenza termica utile 1,2 kW                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| Rendimento termico utile (o di combustione per generatori ad aria calda) al 100% Pn                                                                                                                                                                                                                                                                                                                                                           | 75,0                   |
| Rendimento termico utile (o di combustione per generatori ad aria calda) al 30% Pn                                                                                                                                                                                                                                                                                                                                                            | 0,0                    |
| Per gli impianti termici con o senza produzione di acqua calda sanitaria, che utilizzano, in macchine diverse da quelle sopra descritte, le prestazioni di dette macchine sono fornite i caratteristiche fisiche della specifica apparecchiatura, e applicando, ove esistenti, le viger  c) Specifiche relative ai sistemi di regolazione dell'impianto termico  Tipo di conduzione invernale prevista:  X Continua con attenuazione notturna | utilizzando le         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| Intermittente                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |

| Tipo di conduzione estiva pre                                     | evista:                     |                |                 |                     |                        |          |
|-------------------------------------------------------------------|-----------------------------|----------------|-----------------|---------------------|------------------------|----------|
| Continua con attenuazione                                         | notturna                    |                |                 |                     |                        |          |
| Intermittente                                                     |                             |                |                 |                     |                        |          |
| Sistema di gestione dell'impian                                   | ato termico                 |                |                 |                     |                        |          |
| Cronotermostato                                                   | ito termico                 |                |                 |                     |                        |          |
| Sistema di regolazione climatic                                   | ea in contrale termica (se  | olo per impir  | enti contraliz  | zati)               |                        |          |
| Centralina climatica                                              | a in centrale terrilica (30 | no per impie   | and Centraliza  | zau)                |                        |          |
| Numero dei livelli di programm                                    | azione della temperatura    | a nelle 24 o   | <br>re <b>3</b> |                     |                        |          |
| Numero dei iiveili di programm                                    | azione della temperatura    | a fielle 24 Oi |                 |                     |                        |          |
| Regolatori climatici e dispositiv singole zone o unità immobiliar |                             | matica della   | a temperatur    | a ambiente          | nei singoli locali c   | nelle    |
| Denominazione                                                     |                             | Regolazi       | one             | N                   | Descrizione            | Livelli  |
| U.I.1-Zona 1                                                      | SIH1 Idronico               | Zona +         | climatica       | 1                   | Cronotermo stato wifii | 3        |
| N: numero apparecchi<br>Livelli: Numero di livelli di progran     | nmazione nelle 24 ore       |                |                 | 1                   |                        |          |
| d) Dispositivi per la contabil centralizzati)                     | lizzazione del calore/fr    | eddo nelle     | singole unit    | à immobili          | ari (solo per imp      | ianti    |
| Per Climatizzazione invernale                                     | e                           |                |                 |                     |                        |          |
| Numero di apparecchi 1                                            |                             |                |                 |                     |                        |          |
| Descrizione sintetica dispositiv                                  | 0                           |                |                 |                     |                        |          |
| Caldaia a gas esistente                                           |                             |                |                 |                     |                        |          |
| Per Acqua Calda Sanitaria                                         |                             |                |                 |                     |                        |          |
| Numero di apparecchi 1                                            |                             |                |                 |                     |                        |          |
| Descrizione sintetica dispositivo                                 |                             |                |                 |                     |                        |          |
| Scalda acqua elettrico mural                                      | e ariston sharp eco ev      | 0              |                 |                     |                        |          |
| Per Climatizzazione estiva                                        |                             |                |                 |                     |                        |          |
| Numero di apparecchi 0                                            |                             |                |                 |                     |                        |          |
| Descrizione sintetica dispositiv                                  | 0                           |                |                 |                     |                        |          |
| e) Terminali di erogazione d                                      | _                           |                |                 |                     |                        |          |
| Elenco dei terminali di erogazio                                  | one dell'unità immobiliare  |                | <b>-</b>        |                     | D DAG                  |          |
| Denominazione                                                     |                             | N              | Tipologia       |                     | P [W]                  |          |
| U.I.1-Zona 1                                                      | SIH1 Idronico               | 6              | esterna is      | su parete<br>solata |                        | 13.455,0 |
| N Numero di apparecchi P Potenza installata                       |                             |                |                 |                     |                        |          |
| f) Condotti di evacuazione d                                      | •                           | oustione       |                 |                     |                        |          |
| Descrizione e caratteristiche pr                                  | rıncıpalı                   |                |                 |                     |                        |          |

g) Sistemi di trattamento dell'acqua (tipo di trattamento)

Descrizione e caratteristiche principali

| h) Specifiche dell'isolamento termico della rete di distribuzione                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tipologia, conduttività termica, spessore (vedi allegati alla relazione tecnica)                                                                                                                                                                                                    |
| i) Schemi funzionali degli impianti termici<br>In allegato sono inseriti schemi unifilari di impianto termico con specificato                                                                                                                                                       |
| X Posizionamento e la potenze dei terminali di erogazione – Allegato Allegato 01 -02-03                                                                                                                                                                                             |
| X Posizionamento e tipo dei generatori – Allegato Allegato 01 - 02- 04                                                                                                                                                                                                              |
| X Posizionamento e tipo degli elementi di distribuzione – Allegato Allegato 01 - 02                                                                                                                                                                                                 |
| Posizionamento e tipo degli elementi di controllo – Allegato Allegato 01 -02-05                                                                                                                                                                                                     |
| Posizionamento e tipo degli elementi di sicurezza – Allegato                                                                                                                                                                                                                        |
| 5.2 Impianti fotovoltaici                                                                                                                                                                                                                                                           |
| Nella modellazione dell'edificio sono presenti impianti fotovoltaici [] Si [X] No  Descrizione con caratteristiche tecniche e schemi funzionali (vedi allegati alla relazione tecnica)                                                                                              |
| 5.3 Impianti solari termici                                                                                                                                                                                                                                                         |
| Nella modellazione dell'edificio sono presenti impianti solari termici [] Si [X] No                                                                                                                                                                                                 |
| Descrizione con caratteristiche tecniche e schemi funzionali (vedi allegati alla relazione tecnica)                                                                                                                                                                                 |
| 5.4 Impianti di illuminazione                                                                                                                                                                                                                                                       |
| Nella modellazione dell'edificio sono presenti impianti di illuminazione [X] Si [] No                                                                                                                                                                                               |
| Descrizione con caratteristiche tecniche e schemi funzionali (vedi allegati alla relazione tecnica)                                                                                                                                                                                 |
| 5.5 Altri impianti                                                                                                                                                                                                                                                                  |
| Altri impianti dell'edificio [] Si [X] No                                                                                                                                                                                                                                           |
| Descrizione con caratteristiche tecniche e schemi funzionali                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                     |
| Livello minimo di efficienza dei motori elettrici per ascensori e scale mobili                                                                                                                                                                                                      |
| 6 PRINCIPALI RISULTATI DEI CALCOLI                                                                                                                                                                                                                                                  |
| Si dichiara che l'edificio oggetto della presente relazione può essere definito "edificio ad energia quasi zero"                                                                                                                                                                    |
| in quanto sono contemporaneamente rispettati                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                     |
| • tutti i requisiti previsti dalla lettera b), del comma 2, del paragrafo 3.3 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, secondo i valori vigenti dal 1° gennaio 2019 per gli edifici pubblici e dal 1° gennaio 2021 per tutti gli altri edifici; |
| • gli obblighi di integrazione delle fonti rinnovabili nel rispetto dei principi minimi di cui all'allegato 3, paragrafo 1, lettera c), del decreto legislativo 3 marzo 2011, n.28.                                                                                                 |
|                                                                                                                                                                                                                                                                                     |

## g) Involucro edilizio e ricambi d'aria

Trasmittanza termica degli elementi divisori tra alloggi o unità immobiliari confinanti; confronto con i valori limite: (vedi allegati alla relazione tecnica).

Verifica termoigrometrica: (vedi allegati alla relazione tecnica).

Numero di ricambi d'aria (media nelle 24 ore): (vedi allegati alla relazione tecnica).

Portata d'aria di ricambio solo nei casi di ventilazione meccanica controllata: (vedi allegati alla relazione tecnica). Portata dell'aria circolante attraverso apparecchiature di recupero del calore disperso: (vedi allegati alla relazione tecnica).

Rendimento termico delle apparecchiature di recupero del calore disperso: (vedi allegati alla relazione tecnica).

## h) Indici di prestazione energetica per la climatizzazione invernale ed estiva, per la produzione di acqua calda sanitaria, per la ventilazione e l'illuminazione

Determinazione dei seguenti indici di prestazione energetica, espressi in kWh/m<sup>2</sup> anno, così come definiti al paragrafo 3.3 dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, rendimenti e parametri che ne caratterizzano l'efficienza energetica.

#### Verifica coefficiente medio globale di scambio termico per trasmissione

| Unità immobiliare    | H'T [W/(m <sup>2</sup> K)] | Limite | Verifica |
|----------------------|----------------------------|--------|----------|
| Unità immobiliare 01 | 1,172                      | 0,55   | NO       |

Asol, est/Asup, utile

Limite

Verifica

**H'T**: Coefficiente medio globale di scambio termico per trasmissione per unità di superficie disperdente (Tabella 10 appendice A)

#### Verifica area solare equivalente estiva dei componenti finestrati

Efficienza media stagionale dell'impianto di riscaldamento calcolato

Unità immobiliare

|                                                 | ,                                 |          |        |
|-------------------------------------------------|-----------------------------------|----------|--------|
| Unità immobiliare 01                            | 0,023                             | 0,04     | SI     |
| Verifica Indice di prestazione termica util     | e                                 |          |        |
| Indice di prestazione termica utile per la clim | natizzazione invernale EPH,no     | d 171,01 | kWh/m² |
| Indice di prestazione termica utile per la clim | natizzazione invernale calcola    | to       |        |
| nell'edificio di riferimento EPH,nd,limite:     |                                   | 60,83    | kWh/m² |
| Verifica: No                                    |                                   |          |        |
| Indice di prestazione termica utile per la clim | natizzazione estiva EPC,nd        | 0,79     | kWh/m² |
| Indice di prestazione termica utile per la clim | natizzazione estiva calcolato     |          |        |
| nell'edificio di riferimento EPC,nd,limite:     |                                   | 5,12     | kWh/m² |
| Verifica: Si                                    |                                   |          |        |
| Verifica Indice di prestazione energetica       | globale dell'edificio             |          |        |
| Indice della prestazione energetica globale d   | dell'edificio, espresso in energ  | gia      |        |
| primaria non rinnovabile EPgl,nr                |                                   | 243,81   | kWh/m² |
| Indice della prestazione energetica globale d   | dell'edificio EPgl,tot            | 251,74   | kWh/m² |
| Indice di prestazione energetica globale dell   | 'edificio calcolato nell'edificio | di       |        |
| riferimento EPgl,tot,limite:                    |                                   | 120,62   | kWh/m² |
| Verifica: No                                    |                                   |          |        |
| Verifica Efficienza media stagionale            |                                   |          |        |
| Efficienza media stagionale dell'impianto di    | riscaldamento ηH                  | 0,811    |        |
| Efficienza media stagionale dell'impianto di    | riscaldamento calcolato           |          |        |
| nell'edificio di riferimento ηΗ,limite          |                                   | 0,733    |        |
| Verifica: Si                                    |                                   |          |        |
| Efficienza media stagionale dell'impianto di    | produzione di ACS ηW:             | 1,000    |        |
| Efficienza media stagionale dell'impianto di    | riscaldamento calcolato           |          |        |
| nell'edificio di riferimento ηW,limite          |                                   | 1,000    |        |
| Verifica: No                                    |                                   |          |        |
| Efficienza media stagionale dell'impianto di    | riscaldamento ηC                  | -        |        |

| nell'edificio di riferimento ηΗ,limite               |                  | <u>-</u> |
|------------------------------------------------------|------------------|----------|
| Verifica:                                            |                  |          |
| i) Impianti solari termici per la produzione di a    | cqua calda sanit | aria     |
| Tipo collettore -                                    |                  |          |
| Tipo installazione -                                 |                  |          |
| Descrizione tipo installazione (se altro)            |                  |          |
| Tipo supporto                                        |                  |          |
| Descrizione tipo supporto (se altro)                 |                  |          |
| Inclinazione°                                        |                  |          |
| Orientamento                                         |                  |          |
| Capacità accumulo 0 I                                |                  |          |
| Impianto integrazione (specificare tipo e alimentazi | one)             |          |
| Percentuale copertura fabbisogno annuo0,0 %          | 6                |          |
| j) Impianti fotovoltaici                             |                  |          |
| Connessione impianto: -                              |                  |          |
| Tipo moduli                                          |                  |          |
| Tipo installazione -                                 |                  |          |
| Descrizione tipo installazione (se altro)            |                  |          |
| Tipo supporto                                        |                  |          |
| Descrizione tipo supporto (se altro)                 |                  |          |
| Inclinazione - °                                     |                  |          |
| Orientamento -                                       |                  |          |
| Potenza installata 0,00 kW                           |                  |          |
| Percentuale copertura fabbisogno annuo               | %                |          |
| e) Consuntivo energia                                |                  |          |
| Energia prodotta in sito                             |                  |          |
| Vettore energetico                                   | Udm              | Odel     |

| Vettore energetico                       | Udm | Qdel |
|------------------------------------------|-----|------|
| Energia elettrica da solare fotovoltaico | н   | 0,00 |
| Energia elettrica da solare fotovoltaico | W   | 0,00 |
| Energia elettrica da solare fotovoltaico | L   | 0,00 |
| Energia termica da solare termico        | Н   | 0,00 |
| Energia termica da solare termico        | W   | 0,00 |
| Energia termica da solare termico        | L   | 0,00 |

#### Energia consegnata dall'esterno

| Vettore energetico | Udm | Qdel      |
|--------------------|-----|-----------|
| Gas naturale       | н   | 23.082,40 |
| Gas naturale       | W   | 0,00      |
| Gas naturale       | L   | 0,00      |

| Energia elettrica da rete | Н | 0,00     |
|---------------------------|---|----------|
| Energia elettrica da rete | W | 0,00     |
| Energia elettrica da rete | L | 1.939,52 |

#### Energia esportata

| Vettore energetico        | Udm | Qdel |
|---------------------------|-----|------|
| Energia elettrica da rete | н   | 0,00 |
| Energia elettrica da rete | w   | 0,00 |
| Energia elettrica da rete | L   | 0,00 |

#### Energia primaria

Indice di prestazione rinnovabile diviso per servizio

| Servizio | EPren [kWh/m²] |      |
|----------|----------------|------|
| н        |                | 0,00 |
| W        |                | 0,00 |
| L        |                | 7,93 |

Indice di prestazione non rinnovabile diviso per servizio

| Servizio | EPnren [kWh/m²] |        |
|----------|-----------------|--------|
| н        |                 | 210,90 |
| W        |                 | 0,00   |
| L        |                 | 32,91  |

Indice di prestazione globale diviso per servizio

| Servizio | EPnren [kWh/m²] |        |
|----------|-----------------|--------|
| Н        |                 | 210,90 |
| W        |                 | 0,00   |
| L        |                 | 40,84  |

## f) Valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi ad alta efficienza

Vedi allegati alla relazione tecnica

7 ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

## 8 DOCUMENTAZIONE ALLEGATA Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali e definizione degli elementi costruttivi. Prospetti e sezioni degli edifici con evidenziazione dei sistemi fissi di protezione solare e definizione degli elementi costruttivi. Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari. Schemi funzionali degli impianti contenenti gli elementi di cui all'analoga voce del paragrafo 'Dati relativi agli impianti punto 5.1 lettera i' e dei punti 5.2, 5.3, 5.4, 5.5 Tabelle con indicazione delle caratteristiche termiche, termo igrometriche e della massa efficace dei componenti opachi dell'involucro edilizio con verifica dell'assenza di rischio di formazione di muffe e di condensazioni interstiziali. Tabelle con indicazione delle caratteristiche termiche, termo igrometriche e della massa efficace della loro permeabilità all'aria. Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi alternativi ad alta efficienza. Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento Altri eventuali allegati non obbligatori: 9 DICHIARAZIONE DI RISPONDENZA Il sottoscritto ing. Emanuele Giletti, iscritto a ingegneri Biella, nº 97, essendo a conoscenza delle sanzioni previste dall'articolo 15, commi 1 e 2, del decreto legislativo 192/2005 **DICHIARA** sotto la propria personale responsabilità che: a) il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenute dal decreto legislativo 192/2005 nonché dal decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005; b) il progetto relativo alle opere di cui sopra rispetta gli obblighi di integrazione delle fonti rinnovabili secondo i principi minimi e le decorrenze di cui all'allegato 3, paragrafo 1, lettera c), del decreto legislativo 3 marzo 2011, c) i dati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o desumibile dagli elaborati progettuali

Firma

Data

03 dicembre 2018

#### PROGETTO DELL'ISOLAMENTO

Il calcolo di progetto per l'isolamento dell'involucro dell'edificio ed il conseguente calcolo del carico termico di progetto è condotto in conformità alla UNI EN 12381 – 2006.

#### **COEFFICIENTI DI DISPERSIONE**

Di seguito si riportano gli elementi che costituiscono l'involucro del sistema edificio/impianto con i rispettivi valori di trasmittanza termica U. U' rappresenta la trasmittanza di un elemento opaco valutata comprendendo l'influenza degli eventuali ponti termici associati. A ciascuna voce viene associato il limite da normativa e l'esito della relativa verifica.

| Strutture verticali opache                  | Trasmittanza U<br>W/(m <sup>2</sup> K) | Trasmittanza<br>corretta U'<br>W/(m <sup>2</sup> K) | Trasmittanza<br>limite Ulimite<br>W/(m <sup>2</sup> K) | Verifica |
|---------------------------------------------|----------------------------------------|-----------------------------------------------------|--------------------------------------------------------|----------|
| Verifica non richiesta                      |                                        |                                                     |                                                        |          |
| Strutture orizzontali opache di pavimento   | Trasmittanza U                         | Trasmittanza corretta U'                            | Trasmittanza<br>limite Ulimite                         | Verifica |
|                                             | W/(m <sup>2</sup> K)                   | W/(m <sup>2</sup> K)                                | W/(m <sup>2</sup> K)                                   |          |
| Pavimento su terreno (pv0001)               | 0,493                                  | 0,493                                               | 0,000                                                  | -        |
| Strutture orizzontali opache di copertura   | Trasmittanza U                         | Trasmittanza corretta U'                            | Trasmittanza limite Ulimite                            | Verifica |
|                                             | W/(m <sup>2</sup> K)                   | W/(m <sup>2</sup> K)                                | W/(m <sup>2</sup> K)                                   |          |
| Verifica non richiesta                      |                                        |                                                     |                                                        |          |
| Elementi trasparenti                        | Trasmittanza U                         | Trasmittanza<br>limite Ulimite                      | Verifica                                               |          |
|                                             | W/(m <sup>2</sup> K)                   | W/(m <sup>2</sup> K)                                |                                                        |          |
| -                                           |                                        |                                                     |                                                        |          |
| Serramenti                                  | Trasmittanza U                         | Trasmittanza<br>limite Ulimite                      | Verifica                                               |          |
|                                             | W/(m <sup>2</sup> K)                   | W/(m <sup>2</sup> K)                                |                                                        |          |
| Verifica non richiesta                      |                                        |                                                     |                                                        |          |
| Partizioni interne verticali ed orizzontali | Trasmittanza U                         | Trasmittanza corretta U'                            | Trasmittanza<br>limite Ulimite                         | Verifica |
|                                             | W/(m <sup>2</sup> K)                   | W/(m <sup>2</sup> K)                                | W/(m <sup>2</sup> K)                                   |          |
| Verifica non richiesta                      |                                        |                                                     |                                                        |          |
| Strutture verso il terreno                  | Trasmittanza U                         | Trasmittanza<br>limite Ulimite                      | Verifica                                               |          |
|                                             | W/(m <sup>2</sup> K)                   | W/(m <sup>2</sup> K)                                |                                                        |          |
| Verifica non richiesta                      |                                        |                                                     |                                                        |          |
| Ponti termici                               | Trasmittanza<br>lineica ψi<br>W/(mK)   | Trasmittanza<br>lineica ψοί<br>W/(mK)               | Trasmittanza<br>lineica ψe<br>W/(mK)                   |          |
|                                             |                                        |                                                     |                                                        |          |

#### **DISPERSIONI PER TRASMISSIONE**

I coefficienti di maggiorazione percentuale a seconda dell'esposizione delle strutture verticali sono valutati con riferimento alla norma UNI EN 12831 - 2006, paragrafo 6 dell'appendice NA (prospetto NA.3 a).

#### Zona 1 - piano terra - Δ9progetto = 27,8 °C

| Elemento disperdente                 | Verso di    | Or  | е    | Anetta            | Uοψ                                  | Hix   | btrx | ΦТ       |
|--------------------------------------|-------------|-----|------|-------------------|--------------------------------------|-------|------|----------|
|                                      | dispersione | [-] | [%]  | [m <sup>2</sup> ] | [W/(m <sup>2</sup> K)]<br>o [W/(mK)] | [W/K] | [-]  | [W]      |
| 03 Muratura mista di mattoni e sassi | Esterno     | Е   | 1,15 | 26,46             | 1,366                                | 36,14 | 1,00 | 1.156,60 |
| 03 Muratura mista di mattoni e sassi | Esterno     | N   | 1,20 | 28,38             | 1,366                                | 38,77 | 1,00 | 1.294,68 |
| F01_Finestra 105x75                  | Esterno     | N   | 1,20 | 0,79              | 1,400                                | 1,10  | 1,00 | 36,81    |
| F01_Finestra 105x75                  | Esterno     | N   | 1,20 | 0,79              | 1,400                                | 1,10  | 1,00 | 36,81    |
| 03 Muratura mista di mattoni e sassi | Esterno     | W   | 1,10 | 26,72             | 1,366                                | 36,51 | 1,00 | 1.117,52 |
| 03 Muratura mista di mattoni e sassi | Esterno     | S   | 1,00 | 16,38             | 1,366                                | 22,37 | 1,00 | 622,57   |
| Portone ingresso                     | Esterno     | S   | 1,00 | 6,82              | 1,492                                | 10,18 | 1,00 | 283,23   |
| Portone ingresso                     | Esterno     | S   | 1,00 | 6,82              | 1,492                                | 10,18 | 1,00 | 283,23   |
| Pavimento su terreno                 | Terreno     | -   | 1,00 | 57,46             | 0,493                                | 28,30 | 0,45 | 354,38   |

TOTALE Zona 1 - piano terra 5.185,83

#### Zona 1 - piano primo - Δ9progetto = 27,8 °C

| Elemento disperdente                 | Verso di    | Or  | е    | Anetta            | Uοψ                                  | Hix   | btrx | ΦТ       |
|--------------------------------------|-------------|-----|------|-------------------|--------------------------------------|-------|------|----------|
|                                      | dispersione | [-] | [%]  | [m <sup>2</sup> ] | [W/(m <sup>2</sup> K)]<br>o [W/(mK)] | [W/K] | [-]  | [W]      |
| 03 Muratura mista di mattoni e sassi | Esterno     | Е   | 1,15 | 22,90             | 1,366                                | 31,29 | 1,00 | 1.001,35 |
| 01 Muratura in mattoni pieni         | Esterno     | N   | 1,20 | 24,36             | 1,832                                | 44,63 | 1,00 | 1.490,16 |
| F01_Finestra 105x75                  | Esterno     | N   | 1,20 | 0,79              | 1,400                                | 1,10  | 1,00 | 36,81    |
| F01_Finestra 105x75                  | Esterno     | N   | 1,20 | 0,79              | 1,400                                | 1,10  | 1,00 | 36,81    |
| 03 Muratura mista di mattoni e sassi | Esterno     | W   | 1,10 | 23,14             | 1,366                                | 31,61 | 1,00 | 967,52   |
| 03 Muratura mista di mattoni e sassi | Esterno     | S   | 1,00 | 14,50             | 1,366                                | 19,81 | 1,00 | 551,29   |
| F02_Finestra 220x285                 | Esterno     | S   | 1,00 | 5,74              | 1,400                                | 8,04  | 1,00 | 223,73   |
| F02_Finestra 220x285                 | Esterno     | S   | 1,00 | 5,74              | 1,400                                | 8,04  | 1,00 | 223,73   |

TOTALE Zona 1 - piano primo 4.531,39

Or Orientamento cardinale dell'elemento

e Coefficiente di maggiorazione della dispersione in funzione dell'orientamento [%]

An o I Area strutture al netto degli elementi in detrazione [ $m^2$ ] o lunghezza per i ponti termici [m] U o  $\psi$  Trasmittanza per le strutture [ $W/(m^2K)$ ] o trasmittanza lineica per i ponti termici [W/(mK)]

Hix Coefficiente di scambio termico della struttura verso l'ambiente x [W/K]
btr,x Fattore di riduzione equivalente dello scambio termico verso l'ambiente x [-]

H Coefficiente di scambio termico per trasmissione

Φ Potenza termica dispersa per trasmissione in condizioni di progetto [W]

#### **DISPERSIONI PER VENTILAZIONE**

#### Unità immobiliare 01

#### Volume netto totale dell'edificio Vn: 359,1 m³

| Descrizione dell'ambiente | Ricambio<br>d'aria<br>effettivo | Portata d'aria ricambiata<br>dall'impianto di ventilazione<br>meccanica | Portata d'aria circolante<br>attraverso apparecchi di<br>recupero del calore | Rendimento termico degli apparecchi di recupero del calore |
|---------------------------|---------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------|
|                           |                                 | m <sup>3</sup> /h                                                       | m <sup>3</sup> /h                                                            | %                                                          |
| -                         |                                 |                                                                         |                                                                              |                                                            |

#### Zona: Zona 1

| Locale      | Vn    | V'i                 | HV    | Δθр  | ФV    |
|-------------|-------|---------------------|-------|------|-------|
|             |       | [m <sup>3</sup> /h] | [W/K] | [°C] | [W]   |
| piano terra | 186,7 | 93,4                | 31,7  | 27,8 | 883,4 |
| piano primo | 172,4 | 86,2                | 29,3  | 27,8 | 815,4 |

| Totale Unità immobiliare 01 | 179,6 | 61,1 | - | 1.698,8 |
|-----------------------------|-------|------|---|---------|

н٧ ۷n Volume netto del singolo locale Coefficiente globale di scambio termico per ventilazione V'i

Portata d'aria effettiva di ventilazione per singolo locale Φ۷ Potenza termica dispersa per ventilazione in condizioni di ∆9р progetto

Salto termico di progetto verso l'esterno

#### **POTENZA TERMICA DI RIPRESA**

#### Unità immobiliare 01

#### Zona: Zona 1 - fRH = 18,0 W/m2

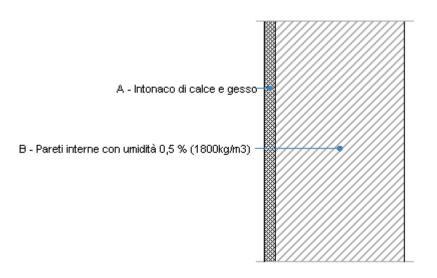
| Locale      | Su                | ΦRH     |
|-------------|-------------------|---------|
|             | [m <sup>2</sup> ] | [W]     |
| piano terra | 57,5              | 1.034,3 |
| piano primo | 57,5              | 1.034,3 |

| Totale Unità immobiliare 01 | 114,9 | 2.068,6 |
|-----------------------------|-------|---------|
|-----------------------------|-------|---------|

fRH Fattore di ripresa

Su Superficie utile netta del locale ΦRH Potenza termica di ripresa

#### **DISPERSIONI DI PROGETTO E CARICO TERMICO TOTALE**


#### Unità immobiliare 01

| Zona riscaldata | ΦТ       | Φγ       | Фкн      | ФНL       |
|-----------------|----------|----------|----------|-----------|
|                 | [W]      | [W]      | [W]      | [W]       |
| Zona 1          | 9.717,22 | 1.698,80 | 2.068,56 | 13.484,58 |

| Totale Unità immobiliare 01 | 9.717,22 | 1.698,80 | 2.068,56 | 13.484,58 |
|-----------------------------|----------|----------|----------|-----------|
|-----------------------------|----------|----------|----------|-----------|

Φτ Potenza termica dispersa per trasmissione in condizioni di progetto
 ΦV Potenza termica dispersa per ventilazione in condizioni di progetto

ΦRH Potenza termica di ripresaΦHL Carico termico totale



Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

#### **DATI DELLA STRUTTURA OPACA**

Nome: 01 Muratura in mattoni pieni

Note: Spessori variabili da 15 cm a 80 cm

Utilizzata in Lombardia per edifici costruiti tra il 1900 e il 1950

Utilizzata in Romagna per edifici costruiti tra il 1900 e il 1950 nella provincia di Ravenna

Utilizzata in Toscana per edifici costruiti tra dal 1900 in poi

Utilizzata in Campania per edifici costruiti fino al 1900

Utilizzata in Veneto per Edifici costruiti tra il 1900 e il 1950

| Tipologia:      | <u>Parete</u>              | Disposizione: | <u>Verticale</u>           |
|-----------------|----------------------------|---------------|----------------------------|
| Verso:          | <u>Esterno</u>             | Spessore:     | <u>270,0</u> mm            |
| Trasmittanza U: | 1,832 W/(m <sup>2</sup> K) | Resistenza R: | 0,546 (m <sup>2</sup> K)/W |
| Massa superf.:  | 450 Kg/m <sup>2</sup>      | Colore:       | Chiaro                     |
| Area:           | - m <sup>2</sup>           |               |                            |

#### STRATIGRAFIA

|   | Strato                                       | Spessore<br>s<br>[mm] | Conduttività<br>λ<br>[W/(mK)] | Resistenza<br>R<br>[(m <sup>2</sup> K)/W] | Densità<br>ρ<br>[Kg/m <sup>3</sup> ] | Capacità term.<br>C<br>[kJ/(kgK)] | Fattore<br>μa<br>[-] | Fattore<br>μu<br>[-] |
|---|----------------------------------------------|-----------------------|-------------------------------|-------------------------------------------|--------------------------------------|-----------------------------------|----------------------|----------------------|
|   | Adduttanza interna (flusso orizzontale)      | -                     | -                             | 0,130                                     | -                                    | -                                 | -                    | -                    |
| Α | Intonaco di calce e gesso                    | 20,0                  | 0,700                         | 0,029                                     | 1.400                                | 0,84                              | 11,1                 | 11,1                 |
| В | Pareti interne con umidità 0,5 % (1800kg/m3) | 250,0                 | 0,720                         | 0,347                                     | 1.800                                | 0,84                              | 5,6                  | 5,6                  |
|   | Adduttanza esterna (flusso orizzontale)      | -                     | -                             | 0,040                                     | -                                    | -                                 | -                    | -                    |
|   | TOTALE                                       | 270,0                 |                               | 0,546                                     |                                      |                                   |                      |                      |

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 0,040 (m²K)/W

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

#### **VERIFICA TERMOIGROMETRICA**

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

#### CONDIZIONI AL CONTORNO E DATI CLIMATICI

| Comune:                   | <u>Verrone</u>                                                  | Tipo di calcolo:            | Classi di concentrazione |
|---------------------------|-----------------------------------------------------------------|-----------------------------|--------------------------|
| Verso:                    | <u>Esterno</u>                                                  | Coeff. di correzione btr,x: |                          |
| Classe di edificio:       | Edifici non occupati, magazzi per stoccaggio di materiale secco | Volume interno V:           | - m <sup>3</sup>         |
| Produz. nota di vapore G: | - kg/h                                                          |                             |                          |

|           | Temperatura<br>interna Ti | Umidità relativa<br>interna φi | Temperatura<br>esterna Te | Umidità relativa<br>esterna φe | Ricambio<br>d'aria n |
|-----------|---------------------------|--------------------------------|---------------------------|--------------------------------|----------------------|
| Mese      | °C                        | %                              | °C                        | %                              | 1/h                  |
| gennaio   | 20,0                      | -                              | 1,3                       | 82,9                           | 0,5                  |
| febbraio  | 20,0                      | -                              | 2,9                       | 76,4                           | 0,5                  |
| marzo     | 20,0                      | -                              | 8,1                       | 57,9                           | 0,5                  |
| aprile    | 20,0                      | -                              | 11,9                      | 69,0                           | 0,5                  |
| maggio    | 20,0                      | -                              | 16,9                      | 72,4                           | 0,5                  |
| giugno    | 20,0                      | -                              | 20,7                      | 67,1                           | 0,5                  |
| luglio    | 20,0                      | -                              | 22,2                      | 70,4                           | 0,5                  |
| agosto    | 20,0                      | -                              | 21,3                      | 75,8                           | 0,5                  |
| settembre | 20,0                      | -                              | 16,4                      | 89,8                           | 0,5                  |
| ottobre   | 20,0                      | -                              | 11,9                      | 84,9                           | 0,5                  |
| novembre  | 20,0                      | -                              | 5,5                       | 91,4                           | 0,5                  |
| dicembre  | 20,0                      | -                              | 1,1                       | 81,1                           | 0,5                  |

| CONDIZIONE | Temperatura interna θi | Pressione parziale interna pi | Temperatura esterna θe | Pressione parziale esterna pe |
|------------|------------------------|-------------------------------|------------------------|-------------------------------|
|            | °C                     | Pa                            | °C                     | Pa                            |
| INVERNALE  | 20,00                  | 1.519,00                      | 1,10                   | 536,10                        |
| ESTIVA     | 20,00                  | 1.738,60                      | 22,20                  | 1.882,40                      |

| X | La struttura non è soggetta a fenomeni di condensa interstiziale.                                           |
|---|-------------------------------------------------------------------------------------------------------------|
| ^ | La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 375,244 Pa.          |
|   | La struttura è soggetta a fenomeni di condensa.                                                             |
|   | La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo). |
| × | La struttura non è soggetta a fenomeni di condensa superficiale.                                            |
| ^ | La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 375,244 Pa.          |

#### **VERIFICA FORMAZIONE CONDENSA SUPERFICIALE**

| Mese     | Pressione<br>esterna Pe<br>Pa | Numero di<br>ric. d'aria n<br>1/h | Variazione di<br>pressione ΔP<br>Pa | Pressione<br>interna Pi<br>Pa | Pressione int.<br>di satur. Psi<br>Pa | Temp. sup.<br>interna T <sub>S</sub> i<br>°C | Fattore di res.<br>sup. fRsi |
|----------|-------------------------------|-----------------------------------|-------------------------------------|-------------------------------|---------------------------------------|----------------------------------------------|------------------------------|
| ottobre  | 1182,49                       | -                                 | 168,85                              | 1351,34                       | 1689,17                               | 14,86                                        | 0,3655                       |
| novembre | 825,15                        | -                                 | 223,25                              | 1048,4                        | 1310,5                                | 10,98                                        | 0,3781                       |
| dicembre | 536,08                        | -                                 | 260,65                              | 796,73                        | 995,92                                | 6,92                                         | 0,308                        |
| gennaio  | 556,25                        | -                                 | 258,95                              | 815,2                         | 1019                                  | 7,25                                         | 0,3184                       |
| febbraio | 574,71                        | -                                 | 245,35                              | 820,06                        | 1025,08                               | 7,34                                         | 0,2597                       |
| marzo    | 624,95                        | -                                 | 201,15                              | 826,1                         | 1032,63                               | 7,45                                         | -0,0547                      |
| aprile   | 960,2                         | -                                 | 168,85                              | 1129,05                       | 1411,32                               | 12,1                                         | 0,025                        |

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico fRsi: 0,3781 (mese di Novembre)

Fattore di resistenza superficiale ammissibile fRsiAmm: 0,7618

ESITO VERIFICA DI CONDENSA SUPERFICIALE: OK

#### PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

|             | Gen     | Feb     | Mar     | Apr     | Mag     | Giu     | Lug     | Ago     | Set     | Ott     | Nov     | Dic     |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Interno-Add | 815,2   | 820,1   | 826,1   | 1.129,1 | 1.519,7 | 1.731,3 | 1.963,7 | 2.006,9 | 1.804,1 | 1.351,3 | 1.048,4 | 796,7   |
|             | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 |
| Add-A       | 779,5   | 786,2   | 798,3   | 1.105,7 | 1.502,2 | 1.718,3 | 1.952,5 | 1.994,6 | 1.786,1 | 1.328,0 | 1.017,6 | 760,8   |
|             | 1.657,4 | 1.707,8 | 1.881,2 | 2.017,4 | 2.209,8 | 2.366,5 | 2.431,0 | 2.392,2 | 2.189,8 | 2.017,4 | 1.792,6 | 1.651,2 |
| A-B         | 556,2   | 574,7   | 625,0   | 960,2   | 1.393,3 | 1.637,2 | 1.882,4 | 1.917,9 | 1.673,5 | 1.182,5 | 825,2   | 536,1   |
|             | 739,8   | 821,7   | 1.145,3 | 1.448,1 | 1.952,3 | 2.432,5 | 2.648,7 | 2.517,0 | 1.895,8 | 1.448,1 | 971,7   | 730,1   |
| B-Add       | 556,2   | 574,7   | 625,0   | 960,2   | 1.393,3 | 1.637,2 | 1.882,4 | 1.917,9 | 1.673,5 | 1.182,5 | 825,2   | 536,1   |
|             | 670,7   | 752,0   | 1.079,5 | 1.392,6 | 1.924,4 | 2.440,1 | 2.674,8 | 2.531,8 | 1.864,2 | 1.392,6 | 902,8   | 661,1   |
|             |         |         |         |         |         |         |         |         |         |         |         |         |

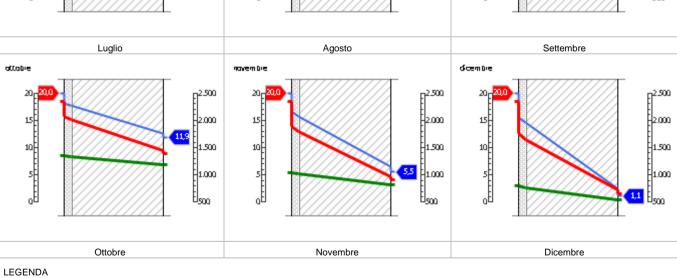
#### **TEMPERATURE**

|             | Gen  | Feb  | Mar  | Apr  | Mag  | Giu  | Lug  | Ago  | Set  | Ott  | Nov  | Dic  |
|-------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Interno-Add | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 |
| Add-A       | 15,5 | 15,9 | 17,2 | 18,1 | 19,3 | 20,2 | 20,5 | 20,3 | 19,1 | 18,1 | 16,5 | 15,5 |
| A-B         | 14,6 | 15,0 | 16,5 | 17,6 | 19,1 | 20,2 | 20,6 | 20,4 | 19,0 | 17,6 | 15,8 | 14,5 |
| B-Add       | 2,7  | 4,2  | 9,0  | 12,5 | 17,1 | 20,6 | 22,0 | 21,2 | 16,7 | 12,5 | 6,6  | 2,5  |
| Add-Esterno | 1,3  | 2,9  | 8,1  | 11,9 | 16,9 | 20,7 | 22,2 | 21,3 | 16,4 | 11,9 | 5,5  | 1,1  |

#### VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

|             | Gen    | Feb    | Mar    | Apr    | Mag    | Giu    | Lug    | Ago    | Set    | Ott    | Nov    | Dic    |
|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Interf. A/B |        |        |        |        |        |        |        |        |        |        |        |        |
| Gc [Kg/m²]  | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| Ma [Kg/m²]  | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| Interf. B/C |        |        |        |        |        |        |        |        |        |        |        |        |
| Gc [Kg/m²]  | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| Ma [Kg/m²]  | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |

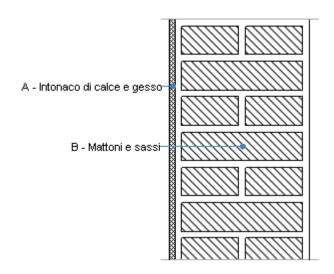
Verifica di condensa interstiziale:


Quantità massima di vapore accumulato mensilmente  $G_{C}$ : 0,0000 (mese di -)  $kg/m^2$  nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,0000 kg/m²

Quantità di vapore residuo  $M_a$ : 0,0000 (mese di -)  $kg/m^2$  nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente


#### DIAGRAMMI DI PRESSIONE E TEMPERATURA mairo Fl<sup>2,500</sup> FI<sup>2,500</sup> FI<sup>2,500</sup> 20<sub>[</sub>20] [<del>|</del>2.000 12,000 Fl2.000 5 H1.500 蚱 1.500 1,500 5 1.000 H1.000 Febbraio Marzo Gennaio арі le падзіо giugna 2.500 2,000 2,000 11,9 1,500 5 H1.500 1.000 H1.000 E)500 El<sub>500</sub> Aprile Maggio Giugno settemble lugia agasto FI<sup>2,500</sup> 2000 1.500 1,000 []<sub>500</sub>



Pressione del vapore [Pa]

Press. di saturazione [Pa]

Temperatura [°C]



Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

#### **DATI DELLA STRUTTURA OPACA**

Nome: 03 Muratura mista di mattoni e sassi

Note: Utilizzata in Lombardia per edifici costruiti tra il 1900 e il 1950 in montagna

Utilizzata in Romagna per edifici costruiti tra il 1900 e il 1950 nelle province di Forlì e Cesena

Utilizzata in Toscana per edifici costruiti dopo il 1950

Utilizzata in Abruzzo per edifici costruiti tra il 1900 e il 1970 in provincia di Pescara (zone montane)

Utilizzata in Liguria per Edifici costruiti tra il 1900 e il 1955 inel centro storico di La Spezia e Sarzana

| Tipologia:      | <u>Parete</u>              | Disposizione: | <u>Verticale</u>           |
|-----------------|----------------------------|---------------|----------------------------|
| Verso:          | <u>Esterno</u>             | Spessore:     | <u>500,0</u> mm            |
| Trasmittanza U: | 1,366 W/(m <sup>2</sup> K) | Resistenza R: | 0,732 (m <sup>2</sup> K)/W |
| Massa superf.:  | 960 Kg/m <sup>2</sup>      | Colore:       | Chiaro                     |
| Area:           | - m <sup>2</sup>           |               |                            |

#### **STRATIGRAFIA**

|   | Strato                                  | Spessore<br>s | Conduttività<br>λ | Resistenza<br>R        | Densità<br>ρ         | Capacità term.<br>C | Fattore<br>μa | Fattore<br>μu |
|---|-----------------------------------------|---------------|-------------------|------------------------|----------------------|---------------------|---------------|---------------|
|   |                                         | [mm]          | [W/(mK)]          | [(m <sup>2</sup> K)/W] | [Kg/m <sup>3</sup> ] | [kJ/(kgK)]          | [-]           | [-]           |
|   | Adduttanza interna (flusso orizzontale) | -             | -                 | 0,130                  | -                    |                     | -             | -             |
| Α | Intonaco di calce e gesso               | 20,0          | 0,700             | 0,029                  | 1.400                | 0,84                | 11,1          | 11,1          |
| В | Mattoni e sassi                         | 480,0         | 0,900             | 0,533                  | 2.000                | 0,84                | 10,7          | 10,7          |
|   | Adduttanza esterna (flusso orizzontale) | -             | -                 | 0,040                  | -                    | -                   | -             | -             |
|   | TOTALE                                  | 500,0         |                   | 0,732                  |                      |                     |               |               |

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

#### **VERIFICA TERMOIGROMETRICA**

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

#### CONDIZIONI AL CONTORNO E DATI CLIMATICI

| Comune:                   | <u>Verrone</u>                    | Tipo di calcolo:            | Classi di concentrazione |  |
|---------------------------|-----------------------------------|-----------------------------|--------------------------|--|
| Verso:                    | <u>Esterno</u>                    | Coeff. di correzione btr,x: |                          |  |
| Classe di edificio:       | Edifici non occupati, magazzi per | Volume interno V:           | - m <sup>3</sup>         |  |
| Classe di edificio:       | stoccaggio di materiale secco     | volume interno v.           | - 1110                   |  |
| Produz. nota di vapore G: | - kg/h                            |                             |                          |  |

|           | Temperatura<br>interna Ti | Umidità relativa<br>interna φi | Temperatura<br>esterna Te | Umidità relativa<br>esterna φe | Ricambio<br>d'aria n |
|-----------|---------------------------|--------------------------------|---------------------------|--------------------------------|----------------------|
| Mese      | °C                        | %                              | °C                        | %                              | 1/h                  |
| gennaio   | 20,0                      | -                              | 1,3                       | 82,9                           | 0,5                  |
| febbraio  | 20,0                      | -                              | 2,9                       | 76,4                           | 0,5                  |
| marzo     | 20,0                      | -                              | 8,1                       | 57,9                           | 0,5                  |
| aprile    | 20,0                      | -                              | 11,9                      | 69,0                           | 0,5                  |
| maggio    | 20,0                      | -                              | 16,9                      | 72,4                           | 0,5                  |
| giugno    | 20,0                      | -                              | 20,7                      | 67,1                           | 0,5                  |
| luglio    | 20,0                      | -                              | 22,2                      | 70,4                           | 0,5                  |
| agosto    | 20,0                      | -                              | 21,3                      | 75,8                           | 0,5                  |
| settembre | 20,0                      | -                              | 16,4                      | 89,8                           | 0,5                  |
| ottobre   | 20,0                      | -                              | 11,9                      | 84,9                           | 0,5                  |
| novembre  | 20,0                      | -                              | 5,5                       | 91,4                           | 0,5                  |
| dicembre  | 20,0                      | -                              | 1,1                       | 81,1                           | 0,5                  |

| CONDIZIONE | Temperatura interna θi | Pressione parziale interna pi | Temperatura esterna θe | Pressione parziale esterna pe |
|------------|------------------------|-------------------------------|------------------------|-------------------------------|
|            | °C                     | Pa                            | °C                     | Pa                            |
| INVERNALE  | 20,00                  | 1.519,00                      | 1,10                   | 536,10                        |
| ESTIVA     | 20,00                  | 1.738,60                      | 22,20                  | 1.882,40                      |

| X | La struttura non è soggetta a fenomeni di condensa interstiziale.                                           |
|---|-------------------------------------------------------------------------------------------------------------|
| ^ | La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 363,684 Pa.          |
|   | La struttura è soggetta a fenomeni di condensa.                                                             |
|   | La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo). |
| × | La struttura non è soggetta a fenomeni di condensa superficiale.                                            |
| ^ | La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 363,684 Pa.          |

#### **VERIFICA FORMAZIONE CONDENSA SUPERFICIALE**

| Mese     | Pressione<br>esterna Pe<br>Pa | Numero di<br>ric. d'aria n<br>1/h | Variazione di<br>pressione ΔP<br>Pa | Pressione<br>interna Pi<br>Pa | Pressione int.<br>di satur. Psi<br>Pa | Temp. sup.<br>interna T <sub>S</sub> i<br>°C | Fattore di res.<br>sup. fRsi |
|----------|-------------------------------|-----------------------------------|-------------------------------------|-------------------------------|---------------------------------------|----------------------------------------------|------------------------------|
| ottobre  | 1182,49                       | -                                 | 168,85                              | 1351,34                       | 1689,17                               | 14,86                                        | 0,3655                       |
| novembre | 825,15                        | -                                 | 223,25                              | 1048,4                        | 1310,5                                | 10,98                                        | 0,3781                       |
| dicembre | 536,08                        | -                                 | 260,65                              | 796,73                        | 995,92                                | 6,92                                         | 0,308                        |
| gennaio  | 556,25                        | -                                 | 258,95                              | 815,2                         | 1019                                  | 7,25                                         | 0,3184                       |
| febbraio | 574,71                        | -                                 | 245,35                              | 820,06                        | 1025,08                               | 7,34                                         | 0,2597                       |
| marzo    | 624,95                        | -                                 | 201,15                              | 826,1                         | 1032,63                               | 7,45                                         | -0,0547                      |
| aprile   | 960,2                         | -                                 | 168,85                              | 1129,05                       | 1411,32                               | 12,1                                         | 0,025                        |

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico fRsi: 0,3781 (mese di Novembre)

Fattore di resistenza superficiale ammissibile fRsiAmm: 0,8224

ESITO VERIFICA DI CONDENSA SUPERFICIALE: OK

#### PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

|             | Gen     | Feb     | Mar     | Apr     | Mag     | Giu     | Lug     | Ago     | Set     | Ott     | Nov     | Dic     |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Interno-Add | 815,2   | 820,1   | 826,1   | 1.129,1 | 1.519,7 | 1.731,3 | 1.963,7 | 2.006,9 | 1.804,1 | 1.351,3 | 1.048,4 | 796,7   |
|             | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 |
| Add-A       | 804,4   | 809,9   | 817,7   | 1.122,0 | 1.514,4 | 1.727,4 | 1.960,3 | 2.003,2 | 1.798,7 | 1.344,3 | 1.039,1 | 785,9   |
|             | 1.811,2 | 1.851,7 | 1.989,0 | 2.094,8 | 2.241,5 | 2.359,0 | 2.406,8 | 2.378,0 | 2.226,5 | 2.094,8 | 1.919,3 | 1.806,2 |
| A-B         | 556,2   | 574,7   | 625,0   | 960,2   | 1.393,3 | 1.637,2 | 1.882,4 | 1.917,9 | 1.673,5 | 1.182,5 | 825,2   | 536,1   |
|             | 721,7   | 803,4   | 1.128,2 | 1.433,8 | 1.945,2 | 2.434,4 | 2.655,3 | 2.520,8 | 1.887,7 | 1.433,8 | 953,7   | 712,0   |
| B-Add       | 556,2   | 574,7   | 625,0   | 960,2   | 1.393,3 | 1.637,2 | 1.882,4 | 1.917,9 | 1.673,5 | 1.182,5 | 825,2   | 536,1   |
|             | 670,7   | 752,0   | 1.079,5 | 1.392,6 | 1.924,4 | 2.440,1 | 2.674,8 | 2.531,8 | 1.864,2 | 1.392,6 | 902,8   | 661,1   |
|             |         |         |         |         |         |         |         |         |         |         |         |         |

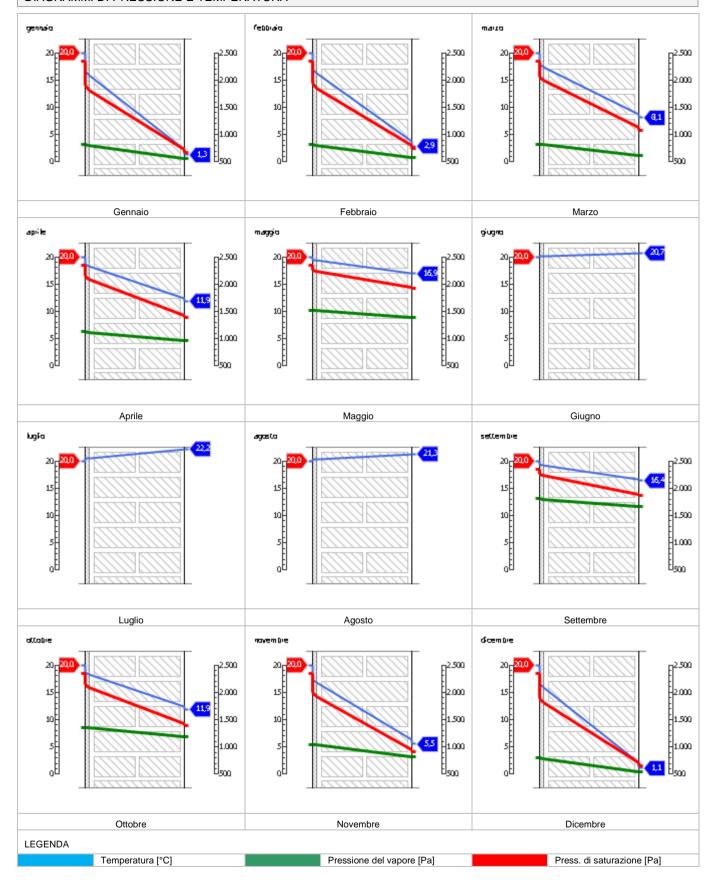
#### **TEMPERATURE**

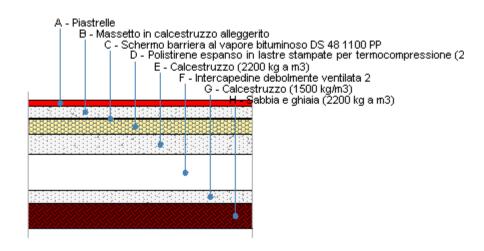
|             | Gen  | Feb  | Mar  | Apr  | Mag  | Giu  | Lug  | Ago  | Set  | Ott  | Nov  | Dic  |
|-------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Interno-Add | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 |
| Add-A       | 16,7 | 17,0 | 17,9 | 18,6 | 19,4 | 20,1 | 20,4 | 20,2 | 19,4 | 18,6 | 17,4 | 16,6 |
| A-B         | 15,9 | 16,3 | 17,4 | 18,2 | 19,3 | 20,2 | 20,5 | 20,3 | 19,2 | 18,2 | 16,9 | 15,9 |
| B-Add       | 2,3  | 3,8  | 8,8  | 12,3 | 17,1 | 20,7 | 22,1 | 21,2 | 16,6 | 12,3 | 6,3  | 2,1  |
| Add-Esterno | 1,3  | 2,9  | 8,1  | 11,9 | 16,9 | 20,7 | 22,2 | 21,3 | 16,4 | 11,9 | 5,5  | 1,1  |

#### **VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE**

|              | Gen    | Feb    | Mar    | Apr    | Mag    | Giu    | Lug    | Ago    | Set    | Ott    | Nov    | Dic    |
|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Interf. A/B  |        |        |        |        |        |        |        |        |        |        |        |        |
| Gc [Kg/m²]   | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| Ma [Kg/m²]   | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| Interf. B/C  |        |        |        |        |        |        |        |        |        |        |        |        |
| Gc [Kg/m²]   | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| Ma [Kg/m²]   | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| ivia [Kg/m²] | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0    |

Verifica di condensa interstiziale:


Quantità massima di vapore accumulato mensilmente  $G_{\mathbb{C}}$ : 0,0000 (mese di -) kg/m $^2$  nell'interfaccia -


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,0000 kg/m²

Quantità di vapore residuo  $M_a$ : 0,0000 (mese di -)  $kg/m^2$  nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

#### DIAGRAMMI DI PRESSIONE E TEMPERATURA





Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

#### **DATI DELLA STRUTTURA OPACA**

Nome: Pavimento su terreno

Note:

| Tipologia:      | <u>Pavimento</u>           | Disposizione: | <u>Orizzontale</u>         |
|-----------------|----------------------------|---------------|----------------------------|
| Verso:          | <u>Terreno</u>             | Spessore:     | <u>501,1</u> mm            |
| Trasmittanza U: | 0,493 W/(m <sup>2</sup> K) | Resistenza R: | 2,030 (m <sup>2</sup> K)/W |
| Massa superf.:  | 549 Kg/m <sup>2</sup>      | Colore:       | Chiaro                     |
| Area:           | - m <sup>2</sup>           |               |                            |

#### STRATIGRAFIA

|   | Strato                                                                  | Spessore | Conduttività | Resistenza             | Densità              | Capacità term. | Fattore       | Fattore       |
|---|-------------------------------------------------------------------------|----------|--------------|------------------------|----------------------|----------------|---------------|---------------|
|   |                                                                         | S        | λ            | R                      | ρ                    | С              | μа            | μu            |
|   |                                                                         | [mm]     | [W/(mK)]     | [(m <sup>2</sup> K)/W] | [Kg/m <sup>3</sup> ] | [kJ/(kgK)]     | [-]           | [-]           |
|   | Adduttanza interna (flusso verticale discendente)                       | -        | -            | 0,170                  | -                    | -              | -             | -             |
| Α | Piastrelle                                                              | 20,0     | 1,000        | 0,020                  | 2.300                | 0,84           | 213,2         | 999.99<br>9,0 |
| В | Massetto in calcestruzzo alleggerito                                    | 50,0     | 1,080        | 0,046                  | 1.600                | 1,00           | 3,3           | 3,3           |
| С | Schermo barriera al vapore bituminoso DS 48 1100 PP                     | 1,1      | 0,170        | 0,006                  | 1.000                | 0,20           | 138.00        | 138.00        |
| D | Polistirene espanso in lastre stampate per termocompressione (20 kg/m3) | 60,0     | 0,040        | 1,500                  | 20                   | 1,34           | 999.99<br>9,0 | 999.99<br>9,0 |
| E | Calcestruzzo (2200 kg a m3)                                             | 80,0     | 1,650        | 0,048                  | 2.200                | 1,00           | 120,0         | 70,0          |
| F | Intercapedine debolmente ventilata 2                                    | 140,0    | 1,250        | 0,112                  | 1                    | 1,00           | 1,0           | 1,0           |
| G | Calcestruzzo (1500 kg/m3)                                               | 50,0     | 0,650        | 0,077                  | 1.500                | 0,88           | 3,3           | 3,3           |
| Н | Sabbia e ghiaia (2200 kg a m3)                                          | 100,0    | 2,000        | 0,050                  | 1.700                | 1,18           | 50,0          | 50,0          |
|   | TOTALE                                                                  | 501,1    |              | 2,030                  |                      |                |               |               |

Conduttanza unitaria superficiale interna: 5,880 W/(m²K)

Resistenza unitaria superficiale interna: 0,170 (m²K)/W

Conduttanza unitaria superficiale esterna: 0,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,000 (m²K)/W

#### **VERIFICA DI TRASMITTANZA**

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

| Comune:                         | <u>Verrone</u>             | Zona climatica:           | <u>E</u>               |
|---------------------------------|----------------------------|---------------------------|------------------------|
| Trasmittanza della struttura U: | 0,493 W/(m <sup>2</sup> K) | Trasmittanza limite Ulim: | - W/(m <sup>2</sup> K) |

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

#### **VERIFICA TERMOIGROMETRICA**

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

#### CONDIZIONI AL CONTORNO E DATI CLIMATICI

| Comune:                   | <u>Verrone</u>                         | Tipo di calcolo:            | Classi di concentrazione |  |  |
|---------------------------|----------------------------------------|-----------------------------|--------------------------|--|--|
| Verso:                    | <u>Terreno</u>                         | Coeff. di correzione btr,x: |                          |  |  |
| Classe di adificia        | Edifici con indice di affollamento non | Volume interno V:           | <sub>- m</sub> 3         |  |  |
| Classe di edificio:       | noto                                   | volume interno v:           | - m~                     |  |  |
| Produz. nota di vapore G: | - kg/h                                 |                             |                          |  |  |

|           | Temperatura<br>interna Ti | Umidità relativa<br>interna φi | Temperatura<br>esterna Te | Umidità relativa<br>esterna φe | Ricambio<br>d'aria n |
|-----------|---------------------------|--------------------------------|---------------------------|--------------------------------|----------------------|
| Mese      | °C                        | %                              | °C                        | %                              | 1/h                  |
| gennaio   | 20,0                      | -                              | 13,7                      | 100,0                          | 0,5                  |
| febbraio  | 20,0                      | -                              | 13,7                      | 100,0                          | 0,5                  |
| marzo     | 20,0                      | -                              | 13,7                      | 100,0                          | 0,5                  |
| aprile    | 20,0                      | -                              | 13,7                      | 100,0                          | 0,5                  |
| maggio    | 20,0                      | -                              | 13,7                      | 100,0                          | 0,5                  |
| giugno    | 20,0                      | -                              | 13,7                      | 100,0                          | 0,5                  |
| luglio    | 20,0                      | -                              | 13,7                      | 100,0                          | 0,5                  |
| agosto    | 20,0                      | -                              | 13,7                      | 100,0                          | 0,5                  |
| settembre | 20,0                      | -                              | 13,7                      | 100,0                          | 0,5                  |
| ottobre   | 20,0                      | -                              | 13,7                      | 100,0                          | 0,5                  |
| novembre  | 20,0                      | -                              | 13,7                      | 100,0                          | 0,5                  |
| dicembre  | 20,0                      | -                              | 13,7                      | 100,0                          | 0,5                  |

| CONDIZIONE | Temperatura interna θi | Pressione parziale interna pi | Temperatura esterna θe | Pressione parziale esterna pe |
|------------|------------------------|-------------------------------|------------------------|-------------------------------|
|            | °C                     | Pa                            | °C                     | Pa                            |
| INVERNALE  | 20,00                  | 1.519,00                      | 13,70                  | 1.564,30                      |
| ESTIVA     | 20,00                  | 1.016,80                      | 13,70                  | 1.564,30                      |

| X | La struttura non è soggetta a fenomeni di condensa interstiziale.  La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 372,516 Pa. |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | La struttura è soggetta a fenomeni di condensa.                                                                                                                       |
|   | La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).                                                           |
|   | La struttura non è soggetta a fenomeni di condensa superficiale.                                                                                                      |
|   | La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.                                                                          |

#### **VERIFICA FORMAZIONE CONDENSA SUPERFICIALE**

| Mese     | Pressione<br>esterna Pe<br>Pa | Numero di<br>ric. d'aria n<br>1/h | Variazione di<br>pressione ΔP<br>Pa | Pressione<br>interna P;<br>Pa | Pressione int.<br>di satur. Psi<br>Pa | Temp. sup.<br>interna T <sub>Si</sub><br>°C | Fattore di res.<br>sup. fRsi |
|----------|-------------------------------|-----------------------------------|-------------------------------------|-------------------------------|---------------------------------------|---------------------------------------------|------------------------------|
| ottobre  | 1564,35                       | -                                 | 324,54                              | 1888,88                       | 2361,1                                | 20,17                                       | 1,0263                       |
| novembre | 1564,35                       | -                                 | 324,54                              | 1888,88                       | 2361,1                                | 20,17                                       | 1,0263                       |
| dicembre | 1564,35                       | -                                 | 324,54                              | 1888,88                       | 2361,1                                | 20,17                                       | 1,0263                       |
| gennaio  | 1564,35                       | -                                 | 324,54                              | 1888,88                       | 2361,1                                | 20,17                                       | 1,0263                       |
| febbraio | 1564,35                       | -                                 | 324,54                              | 1888,88                       | 2361,1                                | 20,17                                       | 1,0263                       |
| marzo    | 1564,35                       | -                                 | 324,54                              | 1888,88                       | 2361,1                                | 20,17                                       | 1,0263                       |
| aprile   | 1564,35                       | -                                 | 324,54                              | 1888,88                       | 2361,1                                | 20,17                                       | 1,0263                       |

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico fRsi: 1,0263 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile fRsiAmm: 0,9360

ESITO VERIFICA DI CONDENSA SUPERFICIALE: NO

#### PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

|             | Gen     | Feb     | Mar     | Apr     | Mag     | Giu     | Lug     | Ago     | Set     | Ott     | Nov     | Dic     |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Interno-Add | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 |
|             | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 |
| Add-A       | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 |
|             | 2.252,7 | 2.252,7 | 2.252,7 | 2.252,7 | 2.252,7 | 2.252,7 | 2.252,7 | 2.252,7 | 2.252,7 | 2.252,7 | 2.252,7 | 2.252,7 |
| A-B         | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 | 1.888,9 |
|             | 2.232,5 | 2.232,5 | 2.232,5 | 2.232,5 | 2.232,5 | 2.232,5 | 2.232,5 | 2.232,5 | 2.232,5 | 2.232,5 | 2.232,5 | 2.232,5 |
| B-C         | 1.888,0 | 1.888,0 | 1.888,0 | 1.888,0 | 1.888,0 | 1.888,0 | 1.888,0 | 1.888,0 | 1.888,0 | 1.888,0 | 1.888,0 | 1.888,0 |
|             | 2.229,7 | 2.229,7 | 2.229,7 | 2.229,7 | 2.229,7 | 2.229,7 | 2.229,7 | 2.229,7 | 2.229,7 | 2.229,7 | 2.229,7 | 2.229,7 |
| C-D         | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 |
|             | 1.657,8 | 1.657,8 | 1.657,8 | 1.657,8 | 1.657,8 | 1.657,8 | 1.657,8 | 1.657,8 | 1.657,8 | 1.657,8 | 1.657,8 | 1.657,8 |
| D-E         | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 |
|             | 1.641,7 | 1.641,7 | 1.641,7 | 1.641,7 | 1.641,7 | 1.641,7 | 1.641,7 | 1.641,7 | 1.641,7 | 1.641,7 | 1.641,7 | 1.641,7 |
| E-F         | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 |
|             | 1.605,0 | 1.605,0 | 1.605,0 | 1.605,0 | 1.605,0 | 1.605,0 | 1.605,0 | 1.605,0 | 1.605,0 | 1.605,0 | 1.605,0 | 1.605,0 |
| F-G         | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 | 1.564,4 |
|             | 1.580,3 | 1.580,3 | 1.580,3 | 1.580,3 | 1.580,3 | 1.580,3 | 1.580,3 | 1.580,3 | 1.580,3 | 1.580,3 | 1.580,3 | 1.580,3 |
| G-Esterno   | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 |
|             | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 | 1.564,3 |
|             |         |         |         |         |         |         |         |         |         |         |         |         |

#### **TEMPERATURE**

|             | Gen  | Feb  | Mar  | Apr  | Mag  | Giu  | Lug  | Ago  | Set  | Ott  | Nov  | Dic  |
|-------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Interno-Add | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 |
| Add-A       | 19,5 | 19,5 | 19,5 | 19,5 | 19,5 | 19,5 | 19,5 | 19,5 | 19,5 | 19,5 | 19,5 | 19,5 |
| A-B         | 19,4 | 19,4 | 19,4 | 19,4 | 19,4 | 19,4 | 19,4 | 19,4 | 19,4 | 19,4 | 19,4 | 19,4 |
| B-C         | 19,3 | 19,3 | 19,3 | 19,3 | 19,3 | 19,3 | 19,3 | 19,3 | 19,3 | 19,3 | 19,3 | 19,3 |
| C-D         | 19,2 | 19,2 | 19,2 | 19,2 | 19,2 | 19,2 | 19,2 | 19,2 | 19,2 | 19,2 | 19,2 | 19,2 |
| D-E         | 14,6 | 14,6 | 14,6 | 14,6 | 14,6 | 14,6 | 14,6 | 14,6 | 14,6 | 14,6 | 14,6 | 14,6 |
| E-F         | 14,4 | 14,4 | 14,4 | 14,4 | 14,4 | 14,4 | 14,4 | 14,4 | 14,4 | 14,4 | 14,4 | 14,4 |
| F-G         | 14,1 | 14,1 | 14,1 | 14,1 | 14,1 | 14,1 | 14,1 | 14,1 | 14,1 | 14,1 | 14,1 | 14,1 |
| G-Esterno   | 13,8 | 13,8 | 13,8 | 13,8 | 13,8 | 13,8 | 13,8 | 13,8 | 13,8 | 13,8 | 13,8 | 13,8 |
| G-Esterno   | 13,7 | 13,7 | 13,7 | 13,7 | 13,7 | 13,7 | 13,7 | 13,7 | 13,7 | 13,7 | 13,7 | 13,7 |

#### VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

|             | Gen    | Feb    | Mar    | Apr    | Mag    | Giu    | Lug    | Ago    | Set    | Ott    | Nov    | Dic    |
|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Interf. A/B |        |        |        |        |        |        |        |        |        |        |        |        |
| Gc [Kg/m²]  | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| Ma [Kg/m²]  | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,000  |
| Interf. B/C |        |        |        |        |        |        |        |        |        |        |        |        |
| Gc [Kg/m²]  | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| Ma [Kg/m²]  | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| Interf. C/D |        |        |        |        |        |        |        |        |        |        |        |        |
| Gc [Kg/m²]  | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| Ma [Kg/m²]  | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| Interf. D/E |        |        |        |        |        |        |        |        |        |        |        |        |
| Gc [Kg/m²]  | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| Ma [Kg/m²]  | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| Interf. E/F |        |        |        |        |        |        |        |        |        |        |        |        |
| Gc [Kg/m²]  | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,000  |
| Ma [Kg/m²]  |        |        |        |        |        |        |        |        |        |        |        |        |

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m² nell'interfaccia - Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,0000 kg/m² Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

### DIAGRAMMI DI PRESSIONE E TEMPERATURA febbiáo mairo tá ĸ Gennaio Febbraio Marzo арі le тадаја giugna ti, 5 ti, 2,000 2000 2000 Aprile Maggio Giugno lugia settem bie agasto tá tá tá 2,000 2000 8 Luglio Settembre Agosto attable navem Die dæmbe tá tá Ħ

Novembre

Pressione del vapore [Pa]

Dicembre

Press. di saturazione [Pa]

Ottobre

Temperatura [°C]

LEGENDA



Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

#### **DATI DELLA STRUTTURA OPACA**

Nome: Portone ingresso

Note:

| Tipologia:      | <u>Porta</u>               | Disposizione: | <u>Verticale</u>           |
|-----------------|----------------------------|---------------|----------------------------|
| Verso:          | <u>Esterno</u>             | Spessore:     | <u>60,0</u> mm             |
| Trasmittanza U: | 1,492 W/(m <sup>2</sup> K) | Resistenza R: | 0,670 (m <sup>2</sup> K)/W |
| Massa superf.:  | 27 Kg/m <sup>2</sup>       | Colore:       | Chiaro                     |
| Area:           | - m <sup>2</sup>           |               |                            |

#### STRATIGRAFIA

|   | Strato                                   | Spessore | Conduttività | Resistenza             | Densità              | Capacità term. | Fattore | Fattore |
|---|------------------------------------------|----------|--------------|------------------------|----------------------|----------------|---------|---------|
|   | Strato                                   | s        | λ            | R                      | ρ                    | С              | μа      | μи      |
|   |                                          | [mm]     | [W/(mK)]     | [(m <sup>2</sup> K)/W] | [Kg/m <sup>3</sup> ] | [kJ/(kgK)]     | [-]     | [-]     |
|   | Adduttanza interna (flusso orizzontale)  | -        | -            | 0,130                  | -                    | -              |         | -       |
| Α | Abete (flusso perpendicolare alle fibre) | 30,0     | 0,120        | 0,250                  | 450                  | 1,38           | 44,4    | 33,3    |
| В | Abete (flusso perpendicolare alle fibre) | 30,0     | 0,120        | 0,250                  | 450                  | 1,38           | 44,4    | 33,3    |
|   | Adduttanza esterna (flusso orizzontale)  | -        | -            | 0,040                  | -                    | -              | -       | -       |
|   | TOTALE                                   | 60.0     |              | 0.670                  |                      |                |         |         |

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

#### **VERIFICA DI TRASMITTANZA**

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

| Comune:                         | <u>Verrone</u>             | Zona climatica:           | <u>E</u>               |
|---------------------------------|----------------------------|---------------------------|------------------------|
| Trasmittanza della struttura U: | 1,492 W/(m <sup>2</sup> K) | Trasmittanza limite Ulim: | - W/(m <sup>2</sup> K) |

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

#### **VERIFICA TERMOIGROMETRICA**

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

#### CONDIZIONI AL CONTORNO E DATI CLIMATICI

| Comune:                   | <u>Verrone</u>                         | Tipo di calcolo:            | Classi di concentrazione |
|---------------------------|----------------------------------------|-----------------------------|--------------------------|
| Verso:                    | <u>Esterno</u>                         | Coeff. di correzione btr,x: |                          |
| Classe di adificio        | Edifici con indice di affollamento non | Valuma interna V            | m3                       |
| Classe di edificio:       | noto                                   | Volume interno V:           | - m <sup>3</sup>         |
| Produz. nota di vapore G: | - kg/h                                 |                             |                          |

|           | Temperatura<br>interna Ti | Umidità relativa<br>interna φi | Temperatura<br>esterna Te | Umidità relativa<br>esterna φe | Ricambio<br>d'aria n |
|-----------|---------------------------|--------------------------------|---------------------------|--------------------------------|----------------------|
| Mese      | °C                        | %                              | °C                        | %                              | 1/h                  |
| gennaio   | 20,0                      | -                              | 1,3                       | 82,9                           | 0,5                  |
| febbraio  | 20,0                      | -                              | 2,9                       | 76,4                           | 0,5                  |
| marzo     | 20,0                      | -                              | 8,1                       | 57,9                           | 0,5                  |
| aprile    | 20,0                      | -                              | 11,9                      | 69,0                           | 0,5                  |
| maggio    | 20,0                      | -                              | 16,9                      | 72,4                           | 0,5                  |
| giugno    | 20,0                      | -                              | 20,7                      | 67,1                           | 0,5                  |
| luglio    | 20,0                      | -                              | 22,2                      | 70,4                           | 0,5                  |
| agosto    | 20,0                      | -                              | 21,3                      | 75,8                           | 0,5                  |
| settembre | 20,0                      | -                              | 16,4                      | 89,8                           | 0,5                  |
| ottobre   | 20,0                      | -                              | 11,9                      | 84,9                           | 0,5                  |
| novembre  | 20,0                      | -                              | 5,5                       | 91,4                           | 0,5                  |
| dicembre  | 20,0                      | -                              | 1,1                       | 81,1                           | 0,5                  |

| CONDIZIONE | Temperatura interna θi | Pressione parziale interna pi | Temperatura esterna θe | Pressione parziale esterna pe |
|------------|------------------------|-------------------------------|------------------------|-------------------------------|
|            | °C                     | Pa                            | °C                     | Pa                            |
| INVERNALE  | 20,00                  | 1.519,00                      | 1,10                   | 536,10                        |
| ESTIVA     | 20,00                  | 1.738,60                      | 22,20                  | 1.882,40                      |

| X | La struttura non è soggetta a fenomeni di condensa interstiziale.                                           |
|---|-------------------------------------------------------------------------------------------------------------|
| ^ | La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 336,429 Pa.          |
|   | La struttura è soggetta a fenomeni di condensa.                                                             |
|   | La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo). |
| × | La struttura non è soggetta a fenomeni di condensa superficiale.                                            |
| ^ | La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 336,429 Pa.          |

#### **VERIFICA FORMAZIONE CONDENSA SUPERFICIALE**

| Mese     | Pressione<br>esterna Pe<br>Pa | Numero di<br>ric. d'aria n<br>1/h | Variazione di<br>pressione ΔP<br>Pa | Pressione<br>interna Pi<br>Pa | Pressione int.<br>di satur. Psi<br>Pa | Temp. sup.<br>interna T <sub>S</sub> i<br>°C | Fattore di res.<br>sup. fRsi |
|----------|-------------------------------|-----------------------------------|-------------------------------------|-------------------------------|---------------------------------------|----------------------------------------------|------------------------------|
| ottobre  | 1182,49                       | -                                 | 387,55                              | 1570,04                       | 1962,55                               | 17,21                                        | 0,6555                       |
| novembre | 825,15                        | -                                 | 614,75                              | 1439,9                        | 1799,88                               | 15,85                                        | 0,7138                       |
| dicembre | 536,08                        | -                                 | 770,95                              | 1307,03                       | 1633,79                               | 14,34                                        | 0,7008                       |
| gennaio  | 556,25                        | -                                 | 763,85                              | 1320,1                        | 1650,12                               | 14,5                                         | 0,7058                       |
| febbraio | 574,71                        | -                                 | 707,05                              | 1281,76                       | 1602,2                                | 14,04                                        | 0,6516                       |
| marzo    | 624,95                        | -                                 | 522,45                              | 1147,4                        | 1434,25                               | 12,35                                        | 0,3569                       |
| aprile   | 960,2                         | -                                 | 387,55                              | 1347,75                       | 1684,69                               | 14,82                                        | 0,3604                       |

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico fRsi: 0,7138 (mese di Novembre)

Fattore di resistenza superficiale ammissibile fRsiAmm: 0,8060

ESITO VERIFICA DI CONDENSA SUPERFICIALE: OK

#### PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

|             | Gen     | Feb     | Mar     | Apr     | Mag     | Giu     | Lug     | Ago     | Set     | Ott     | Nov     | Dic     |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Interno-Add | 1.320,1 | 1.281,8 | 1.147,4 | 1.347,8 | 1.603,4 | 1.712,4 | 1.904,3 | 1.971,8 | 1.901,3 | 1.570,0 | 1.439,9 | 1.307,0 |
|             | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 | 2.337,0 |
| Add-A       | 938,2   | 928,2   | 886,2   | 1.154,0 | 1.498,3 | 1.674,8 | 1.893,4 | 1.944,9 | 1.787,4 | 1.376,3 | 1.132,5 | 921,6   |
|             | 1.178,3 | 1.252,3 | 1.521,7 | 1.749,4 | 2.094,4 | 2.395,0 | 2.523,7 | 2.445,8 | 2.057,4 | 1.749,4 | 1.381,2 | 1.169,3 |
| A-B         | 556,2   | 574,7   | 625,0   | 960,2   | 1.393,3 | 1.637,2 | 1.882,4 | 1.917,9 | 1.673,5 | 1.182,5 | 825,2   | 536,1   |
|             | 726,6   | 808,3   | 1.132,8 | 1.437,7 | 1.947,1 | 2.433,9 | 2.653,5 | 2.519,7 | 1.889,9 | 1.437,7 | 958,5   | 716,9   |
| B-Add       | 556,2   | 574,7   | 625,0   | 960,2   | 1.393,3 | 1.637,2 | 1.882,4 | 1.917,9 | 1.673,5 | 1.182,5 | 825,2   | 536,1   |
|             | 670,7   | 752,0   | 1.079,5 | 1.392,6 | 1.924,4 | 2.440,1 | 2.674,8 | 2.531,8 | 1.864,2 | 1.392,6 | 902,8   | 661,1   |
|             |         |         |         |         |         |         |         |         |         |         |         |         |

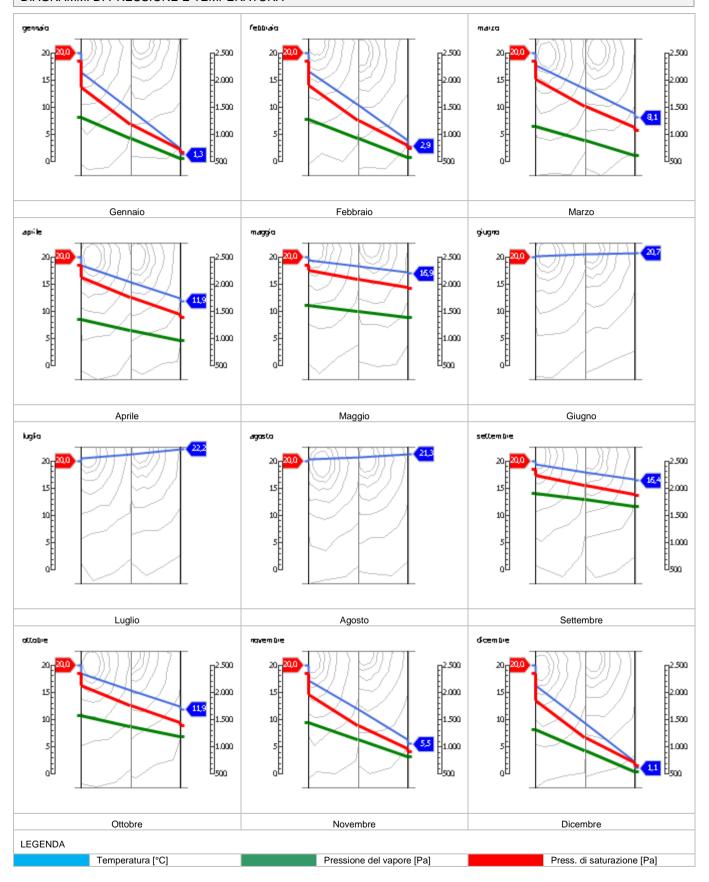
#### **TEMPERATURE**

|             | Gen  | Feb  | Mar  | Apr  | Mag  | Giu  | Lug  | Ago  | Set  | Ott  | Nov  | Dic  |
|-------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Interno-Add | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 | 20,0 |
| Add-A       | 16,4 | 16,7 | 17,7 | 18,4 | 19,4 | 20,1 | 20,4 | 20,3 | 19,3 | 18,4 | 17,2 | 16,3 |
| A-B         | 9,4  | 10,3 | 13,3 | 15,4 | 18,2 | 20,4 | 21,2 | 20,7 | 18,0 | 15,4 | 11,8 | 9,3  |
| B-Add       | 2,4  | 3,9  | 8,8  | 12,4 | 17,1 | 20,7 | 22,1 | 21,2 | 16,6 | 12,4 | 6,4  | 2,2  |
| Add-Esterno | 1,3  | 2,9  | 8,1  | 11,9 | 16,9 | 20,7 | 22,2 | 21,3 | 16,4 | 11,9 | 5,5  | 1,1  |

#### VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

| Gen    | Feb                        | Mar                                             | Apr                                                                  | Mag                                                                                       | Giu                                                                                                     | Lug                                                                                                                          | Ago                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|----------------------------|-------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                            |                                                 |                                                                      |                                                                                           |                                                                                                         |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0,0000 | 0,0000                     | 0,0000                                          | 0,0000                                                               | 0,0000                                                                                    | 0,0000                                                                                                  | 0,0000                                                                                                                       | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0,0000 | 0,0000                     | 0,0000                                          | 0,0000                                                               | 0,0000                                                                                    | 0,0000                                                                                                  | 0,0000                                                                                                                       | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                            |                                                 |                                                                      |                                                                                           |                                                                                                         |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0,0000 | 0,0000                     | 0,0000                                          | 0,0000                                                               | 0,0000                                                                                    | 0,0000                                                                                                  | 0,0000                                                                                                                       | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0,0000 | 0,0000                     | 0,0000                                          | 0,0000                                                               | 0,0000                                                                                    | 0,0000                                                                                                  | 0,0000                                                                                                                       | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | 0,0000<br>0,0000<br>0,0000 | 0,0000 0,0000<br>0,0000 0,0000<br>0,0000 0,0000 | 0,0000 0,0000 0,0000<br>0,0000 0,0000 0,0000<br>0,0000 0,0000 0,0000 | 0,0000 0,0000 0,0000 0,0000<br>0,0000 0,0000 0,0000 0,0000<br>0,0000 0,0000 0,0000 0,0000 | 0,0000 0,0000 0,0000 0,0000 0,0000<br>0,0000 0,0000 0,0000 0,0000 0,0000<br>0,0000 0,0000 0,0000 0,0000 | 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000<br>0,0000 0,0000 0,0000 0,0000 0,0000 0,0000<br>0,0000 0,0000 0,0000 0,0000 0,0000 | 0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000< | 0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000< | 0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000< | 0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000< | 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,00 |

Verifica di condensa interstiziale:


Quantità massima di vapore accumulato mensilmente  $G_{\mathbb{C}}$ : 0,0000 (mese di -) kg/m $^2$  nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia  $G_{C,max}$ : 0,0000 kg/m<sup>2</sup>

Quantità di vapore residuo  $M_a$ : 0,0000 (mese di -) kg/m $^2$  nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

#### DIAGRAMMI DI PRESSIONE E TEMPERATURA



#### SERRAMENTO: F01 Finestra 105x75

#### **GEOMETRIA DEL SERRAMENTO**

Nome: F01 Finestra 105x75

Note:

Produttore:

Larghezza: 105 cm Altezza: 75 cm

Disperde verso: **Esterno** 

Spessore superiore del telaio: 8 cm Spessore inferiore del telaio: 8 cm Spessore sinistro del telaio: 8 cm Spessore destro del telaio: 8 cm Numero divisioni verticali: 1 Spessore divisioni verticali: 8 cm Numero divisioni orizzontali: 1 Spessore divisioni orizzontali: 5 cm 75 59 8 105

Area del vetro Ag: 0,437 m<sup>2</sup> Area del telaio Af: 0,350 m<sup>2</sup>

Area totale del serramento Aw: 0,787 m<sup>2</sup> Perimetro della superficie vetrata Lg: 5,400 m

#### PARAMETRI DEL VETRO E DEL TELAIO

#### Vetro

Nome del vetro: Doppio vetro BE [4-12-4] Argon Coefficiente di trasmissione solare g: 0,670 Trasmittanza termica vetro Ug: 1,653 W/(m<sup>2</sup> K)

Tipologia vetro: Doppio vetro con rivestimento basso-emissivo

Tipologia telaio: Legno tenero (pino, abete, larice..)

Emissività ε: 0.050

Distanziatore: Plastica

#### Telaio

Materiale: Legno

Spessore sf: 60 mm

Trasmittanza termica del telaio Uf: 1,800 W/(m<sup>2</sup> K)

Trasmittanza lineica ponte termico tra vetro e telaio ψfg: 0.060 W/(m K)

#### **SCHERMATURE MOBILI**

Tipo schermatura: -Colore: -

Posizione: -Trasparenza: g,gl,sh,b: -

g,gl,sh,d: g,gl,sh/g,gl: -

#### PARAMETRI TERMICI DELLA CHIUSURA

Tipo chiusura: -

Permeabilità della chiusura: -

Resistenza termica aggiuntiva dovuta alla chiusura ΔR: 0,000 (m<sup>2</sup> K)/W

Frazione oraria di utilizzo della chiusura fshut: 0,60

#### PERMEABILITÀ ALL'ARIA

Classe permeabilità all'aria del serramento secondo UNI 1026: Non dichiarato (MIN 1- MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

#### PARAMETRI RIASSUNTIVI DEL SERRAMENTO

Trasmittanza termica del serramento Uw: 1,400 W/(m<sup>2</sup> K)

Trasmittanza termica serramento comprendendo la tapparella Uw, CORR: 1,400 W/(m² K)

#### STRUTTURE ASSOCIATE AL SERRAMENTO

| Strutture opache e ponti termici | Area o lunghezza<br>[m²] o [m] | Trasmittanza<br>[W/(m <sup>2</sup> K)] o<br>[W/(mK)] |
|----------------------------------|--------------------------------|------------------------------------------------------|
| Assenti                          | -                              | -                                                    |

SERRAMENTO: F01\_Finestra 105x75

#### **VERIFICHE DEL SERRAMENTO**

#### Verifica di trasmittanza

Comune di riferimento: <u>Verrone</u> Anno di riferimento: <u>2018</u>

Trasmittanza serramento U<sub>W</sub>: 1,400 W/(m<sup>2</sup> K)

Zona climatica di riferimento:  $\underline{\underline{\textbf{E}}}$ Trasmittanza limite  $U_W$ : -  $W/(m^2 \text{ K})$ 

#### **VERIFICA:** -

Riferimento normativo:

Limiti relativi alla Normativa Nazionale Legge 90

#### SERRAMENTO: F02 Finestra 220x285

#### **GEOMETRIA DEL SERRAMENTO**

Nome: F02 Finestra 220x285

Note:

Produttore:

Larghezza: 220 cm Altezza: 285 cm

Disperde verso: **Esterno** 

Spessore superiore del telaio: 8 cm Spessore inferiore del telaio: 8 cm Spessore sinistro del telaio: 8 cm Spessore destro del telaio: 8 cm Numero divisioni verticali: 3 Spessore divisioni verticali: 5 cm Numero divisioni orizzontali: Spessore divisioni orizzontali: 5 cm

Area del vetro Ag: 4,285 m<sup>2</sup> Area del telaio Af: 1,458 m<sup>2</sup>

Area totale del serramento Aw: 5,743 m<sup>2</sup>

Perimetro della superficie vetrata Lg: 36,806 m

285 269

#### PARAMETRI DEL VETRO E DEL TELAIO

#### Vetro

Nome del vetro: Doppio vetro BE [4-12-4] Argon Coefficiente di trasmissione solare g: 0,670 Trasmittanza termica vetro Ug: 1,653 W/(m<sup>2</sup> K)

Tipologia vetro: Doppio vetro con rivestimento basso-emissivo

Tipologia telaio: Legno tenero (pino, abete, larice..)

220

Emissività ε: 0,050

Distanziatore: Plastica

#### Telaio

Materiale: Legno

Spessore sf: 60 mm

Trasmittanza termica del telaio Uf: 1,800 W/(m<sup>2</sup> K)

Trasmittanza lineica ponte termico tra vetro e telaio ψfg: 0.060 W/(m K)

#### **SCHERMATURE MOBILI**

Posizione: -Tipo schermatura: -Colore: -Trasparenza: g,gl,sh,d: g,gl,sh,b: g,gl,sh/g,gl: -

## PARAMETRI TERMICI DELLA CHIUSURA

Tipo chiusura: -Permeabilità della chiusura: -

Resistenza termica aggiuntiva dovuta alla chiusura ΔR: 0,000 (m<sup>2</sup> K)/W

Frazione oraria di utilizzo della chiusura fshut: 0,60

#### PERMEABILITÀ ALL'ARIA

Classe permeabilità all'aria del serramento secondo UNI 1026: Non dichiarato (MIN 1- MAX 4) La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

#### PARAMETRI RIASSUNTIVI DEL SERRAMENTO

Trasmittanza termica del serramento Uw: 1,400 W/(m<sup>2</sup> K)

Trasmittanza termica serramento comprendendo la tapparella Uw, CORR: 1,400 W/(m² K)

#### STRUTTURE ASSOCIATE AL SERRAMENTO

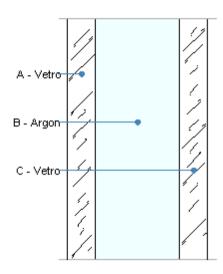
| Strutture opache e ponti termici | Area o lunghezza<br>[m²] o [m] | <i>Trasmittanza</i><br>[W/(m <sup>2</sup> K)] o<br>[W/(mK)] |
|----------------------------------|--------------------------------|-------------------------------------------------------------|
| Assenti                          | -                              | -                                                           |

SERRAMENTO: F02 Finestra 220x285

#### **VERIFICHE DEL SERRAMENTO**

#### Verifica di trasmittanza

Comune di riferimento: <u>Verrone</u>
Anno di riferimento: <u>2018</u>


Trasmittanza serramento Uw: 1,400 W/( $m^2$  K)

Zona climatica di riferimento:  $\underline{\underline{\textbf{E}}}$  Trasmittanza limite Uw: - W/(m $^2$  K)

**VERIFICA:** -

Riferimento normativo:

Limiti relativi alla Normativa Nazionale Legge 90



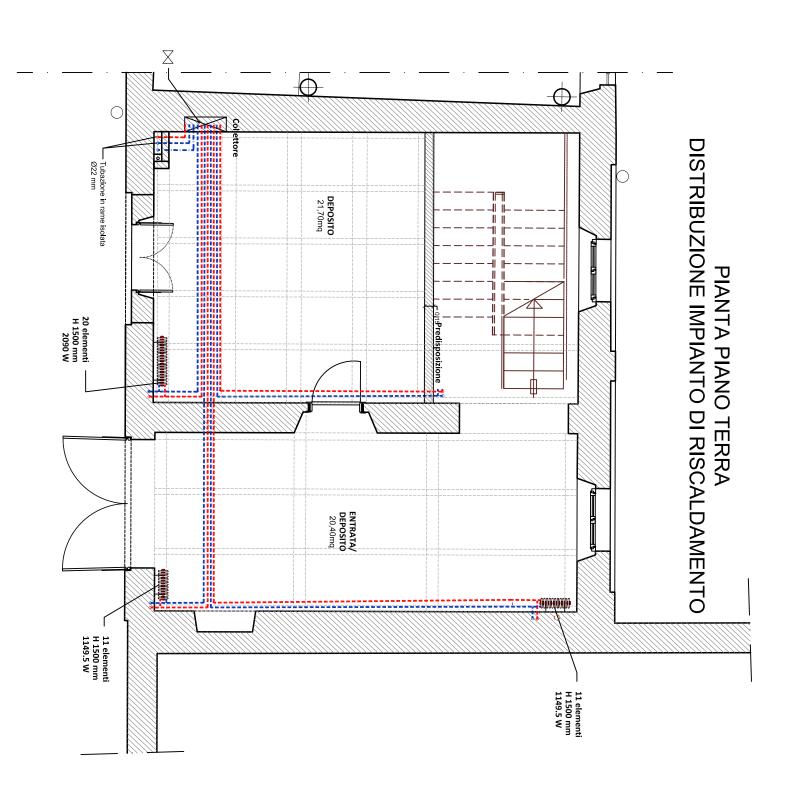
Le proprietà termiche dei vetri sono valutate in base alla UNI EN 673.

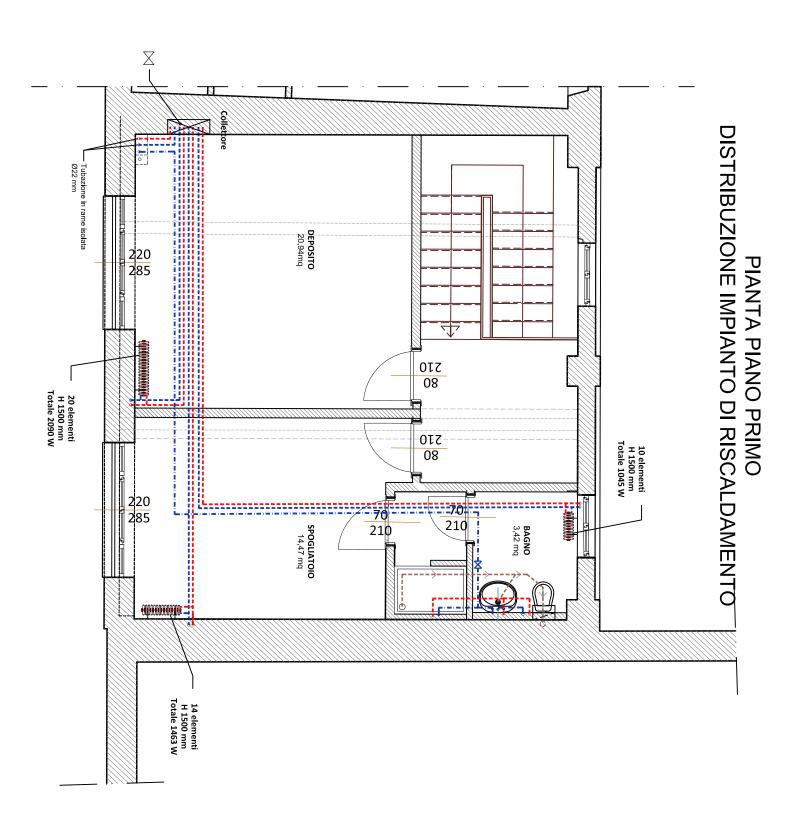
#### **DATI DEL VETRO**

Nome: Doppio vetro BE [4-12-4] Argon

Note:

| Numero lastre:  |                            | Spessore vetro: | <u>20,0 mm</u>             |
|-----------------|----------------------------|-----------------|----------------------------|
| Trasmittanza U: | 1,653 W/(m <sup>2</sup> K) | Resistenza R:   | 0,605 (m <sup>2</sup> K)/W |


#### STRATIGRAFIA

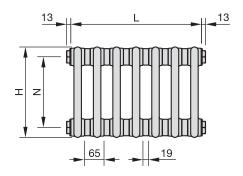

|   | Strato                                  | Spessore<br>s | Conduttività<br>λ | Emissività<br>normale<br>interna ε <sub>ni</sub> | Emissività<br>normale<br>esterna εne | Densità<br>ρ         | Viscosità<br>dinamica μ    | Capacità<br>termica<br>specifica c |
|---|-----------------------------------------|---------------|-------------------|--------------------------------------------------|--------------------------------------|----------------------|----------------------------|------------------------------------|
|   |                                         | [mm]          | [W/(mK)]          | [-]                                              | [-]                                  | [Kg/m <sup>3</sup> ] | [10 <sup>-5</sup> Kg/(ms)] | [J/(kgK)]                          |
|   | Adduttanza interna (flusso orizzontale) | -             | 7,690             | -                                                | -                                    | -                    | -                          | -                                  |
| Α | Vetro                                   | 4,0           | 1,000             | 0,89                                             | 0,17                                 | 2.500                | 0,0                        | 0,84                               |
| В | Argon                                   | 12,0          | 0,017             | 0,00                                             | 0,00                                 | 2                    | 2,2                        | 0,52                               |
| С | Vetro                                   | 4,0           | 1,000             | 0,89                                             | 0,89                                 | 2.500                | 0,0                        | 0,84                               |
|   | Adduttanza esterna (flusso orizzontale) | -             | 25,000            | -                                                | -                                    | -                    | -                          | -                                  |
|   | TOTALE                                  | 20,0          |                   |                                                  |                                      |                      |                            |                                    |

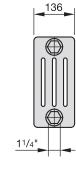
#### RESISTENZE

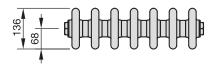
Costanti dipendenti dall'orientamento del vetro: A = 0,035, N = 0,38

|   | Strato                                  | Emissività<br>corretta<br>interna εi | Emissività<br>corretta<br>esterna εe | Salto termico<br>intercapedine<br>ΔT | Conduttanza<br>radiativa hr | Conduttanza<br>lastra hg | Conduttanza<br>intercapedine<br>hs | Resistenza<br>termica R |
|---|-----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------|--------------------------|------------------------------------|-------------------------|
|   |                                         | [-]                                  | [-]                                  | [°C]                                 | [W/(m <sup>2</sup> K)]      | [W/(m <sup>2</sup> K)]   | $[W/(m^2K)]$                       | [(m <sup>2</sup> K)/W]  |
|   | Adduttanza interna (flusso orizzontale) | -                                    | -                                    | -                                    | -                           | -                        | -                                  | 0,130                   |
| Α | Vetro                                   | -                                    | -                                    | -                                    | -                           | -                        | -                                  | 0,004                   |
| В | Argon                                   | 0,189                                | 0,837                                | 15,00                                | 0,939                       | 1,403                    | 2,342                              | 0,427                   |
| С | Vetro                                   | -                                    | -                                    | -                                    | -                           | -                        | -                                  | 0,004                   |
|   | Adduttanza esterna (flusso orizzontale) | -                                    | -                                    | -                                    | -                           | -                        | -                                  | 0,040                   |
|   | TOTALE                                  |                                      |                                      |                                      |                             |                          |                                    | 0,61                    |







Dati tecnici Classe di sconto: F0


## Zehnder Charleston Clinic



#### Modello a 4 colonne







H = altezza

L = lunghezza = elementi x 65 mm - 19 mm

N = interasse = H - 66 mm

= profondità

A = superficie

= contenuto d'acqua

1 = peso c = quota di irraggiamento

q<sub>ms</sub> = portata nominale

= esponente

 $\Phi_{\rm S}$  = potenza termica nominale secondo

EN 442 (75/65/20 °C) ΔT 50

 $\Phi$  = potenza termica con temperature del sistema  $\Delta T$  30

#### Quote in mm

| Dati tecnici | Dati tecnici per elemento |      |     |                |                 |      |                |                 |      |                                |                      |                    |  |
|--------------|---------------------------|------|-----|----------------|-----------------|------|----------------|-----------------|------|--------------------------------|----------------------|--------------------|--|
| Modello      | Н                         | N    | Т   | А              | V               | М    | s <sub>k</sub> | q <sub>ms</sub> | Esp. | Φ <sub>s</sub> =ΔT 50<br>EN442 | ΔT 30<br>55/45/20 °C | Prezzo ad elemento |  |
|              | mm                        | mm   | mm  | m <sup>2</sup> | dm <sup>3</sup> | kg   | %              | kg/h            | n    | Watt                           | Watt                 | €                  |  |
| K4019        | 200                       | 134  | 136 | 0,07           | 0,6             | 0,70 | 20             | 2,7             | 1,27 | 32,1                           | 16,8                 | 20,70              |  |
| K4026        | 260                       | 194  | 136 | 0,09           | 0,7             | 0,87 | 18             | 3,4             | 1,27 | 40,4                           | 21,1                 | 21,12              |  |
| K4030        | 300                       | 234  | 136 | 0,10           | 0,8             | 0,98 | 18             | 3,9             | 1,27 | 45,8                           | 23,9                 | 21,63              |  |
| K4035        | 350                       | 284  | 136 | 0,11           | 0,9             | 1,11 | 17             | 4,5             | 1,28 | 52,5                           | 27,3                 | 21,63              |  |
| K4040        | 400                       | 334  | 136 | 0,13           | 0,9             | 1,25 | 16             | 5,1             | 1,28 | 59,2                           | 30,8                 | 21,73              |  |
| K4045        | 450                       | 384  | 136 | 0,15           | 1,0             | 1,39 | 16             | 5,7             | 1,28 | 65,7                           | 34,2                 | 21,84              |  |
| K4050        | 500                       | 434  | 136 | 0,16           | 1,1             | 1,53 | 16             | 6,2             | 1,28 | 72,3                           | 37,6                 | 21,84              |  |
| K4055        | 550                       | 484  | 136 | 0,18           | 1,2             | 1,66 | 16             | 6,8             | 1,28 | 78,8                           | 41,0                 | 22,04              |  |
| K4060        | 600                       | 534  | 136 | 0,19           | 1,3             | 1,80 | 15             | 7,4             | 1,28 | 85,4                           | 44,4                 | 22,35              |  |
| K4075        | 750                       | 684  | 136 | 0,24           | 1,5             | 2,21 | 15             | 9,1             | 1,29 | 105,0                          | 54,3                 | 26,16              |  |
| K4090        | 900                       | 834  | 136 | 0,29           | 1,8             | 2,62 | 15             | 10,8            | 1,29 | 125,0                          | 64,7                 | 27,60              |  |
| K4100        | 1000                      | 934  | 136 | 0,32           | 1,9             | 2,90 | 15             | 11,9            | 1,29 | 138,0                          | 71,4                 | 34,92              |  |
| K4110        | 1100                      | 1034 | 136 | 0,35           | 2,1             | 3,17 | 15             | 13,0            | 1,30 | 151,0                          | 77,7                 | 41,92              |  |
| K4120        | 1200                      | 1134 | 136 | 0,38           | 2,2             | 3,45 | 15             | 14,1            | 1,31 | 165,0                          | 84,5                 | 49,03              |  |
| K4150        | 1500                      | 1434 | 136 | 0,47           | 2,7             | 4,27 | 15             | 17,4            | 1,31 | 204,0                          | 104,5                | 68,08              |  |
| K4180        | 1800                      | 1734 | 136 | 0,57           | 3,1             | 5,09 | 15             | 20,6            | 1,31 | 244,0                          | 125,0                | 81,68              |  |
| K4200        | 2000                      | 1934 | 136 | 0,63           | 3,4             | 5,64 | 15             | 22,9            | 1,31 | 270,0                          | 138,3                | 89,30              |  |

Prezzo nel colore bianco RAL 9016; Supplemento per i colori della cartella colori: + 20%















- / Design esclusivo
- / Regolazione precisa e personalizzabile della temperatura
- / Funzione ECO EVO (brevettata)
- / Reset facile e immediato
- / Isolamento di poliuretano di elevate dimensioni
- / Valvola sicurezza testata a 8 bar
- / Caldaia smaltata al titanio testata a 16 bar
- / Flangia 5 bulloni

**CLASSE ENERGETICA** 

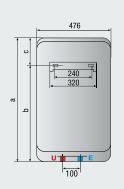


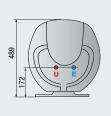


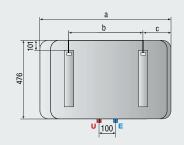


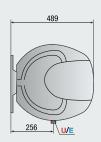
Powered by

## CoreTECH


Termostato elettronico avanzato


"Rispetto ad un scaldacqua elettrico della stessa taglia in base ai regolamenti sull'etichettatura europea UE n. 812/2013
\*\* Risparmio stinato i spetto ad uno scaldacqua elettrico tradizionale a partire dalla domanda media Europea di consumo di acqua calda (2007 VHK


Ecodesign studio WH)


Il risparmio cambia a seconda della capacità di prodotto

| DATI TECNICI                |         | 50 V/5    | 80 V/5    | 100 V/5    | 50 H/5    | 80 H/5    | 100 H/5    |
|-----------------------------|---------|-----------|-----------|------------|-----------|-----------|------------|
| Capacità                    | 1       | 50        | 80        | 100        | 50        | 80        | 100        |
| Potenza                     | kW      | 1,200     | 1,200     | 1,500      | 1,200     | 1,200     | 1,500      |
| Voltaggio                   | V       | 230       | 230       | 230        | 230       | 230       | 230        |
| Tempo di riscald. (ΔT=45°C) | h,min.  | 2,17      | 3,40      | 3,40       | 2,17      | 3,40      | 3,40       |
| Temp. max d'esercizio       | °C      | 80        | 80        | 80         | 80        | 80        | 80         |
| Dispersione termica a 65°C  | kWh/24h | 0,80      | 0,94      | 1,08       | 0,85      | 1,14      | 1,28       |
| Pressione max d'esercizio   | bar     | 8         | 8         | 8          | 8         | 8         | 8          |
| Peso netto                  | kg      | 19        | 23,5      | 27         | 19        | 23,5      | 27         |
| Protezione                  | IP      | X4        | X4        | X4         | X4        | X4        | X4         |
| DIMENSIONI DI INGOMBRO      |         |           |           |            |           |           |            |
| а                           | mm      | 570       | 775       | 927        | 570       | 775       | 927        |
| b                           | mm      | 379       | 584       | 736        | 164       | 331       | 483        |
| С                           | mm      | 191       | 191       | 191        | 172       | 191       | 191        |
| SHAPE ECO EVO               |         | 50 V/5 EU | 80 V/5 EU | 100 V/5 EU | 50 H/5 EU | 80 H/5 EU | 100 H/5 EU |
| Classe energetica           |         | В         | В         | В          | С         | С         | C          |
| Profilo di prelievo         |         | М         | М         | M          | M         | М         | L          |
| CODICI                      |         | 3626084   | 3626085   | 3626086    | 3626087   | 3626088   | 3626089    |









LEGENDA

Entrata acqua fredda G 1/2"

Uscita acqua calda G 1/2"



NOTA: Il valore di capacità riportato in questo catalogo identifica la categoria di prodotto.

La capacità effettiva del prodotto è riportata nella relativa documentazione tecnica.

## SCALDACQU/

#### Descrizione

Il termostato elettronico connesso Smarther in abbinamento con l'App dedicata Thermostat permette di regolare e monitorare la temperatura all'interno degli ambienti in locale e da remoto. Localmente è possibile modificare l'impostazione del livello di temperatura per il funzionamento manuale e attivare la modalità Boost che permette di forzare l'accensione dell'impianto per un periodo limitato (30, 60 o 90 minuti) indipendentemente dalla temperatura misurata e da quella programmata; permette inoltre di visualizzare la temperatura e l'umidità misurate.

Grazie alla connessione Wi-Fi di cui è dotato, tutta la programmazione e gran parte delle funzioni vengono effettuate in maniera semplice ed intuitiva utilizzando l'App in casa o da remoto.

Smarther è installabile sia in scatole da incasso tipo 503E che in scatole da incasso tonde:

- tipo 500
- tipo 502PB (solo per X8000/SX8000);
- tipo 0 800 21 (solo per 0 490 36).

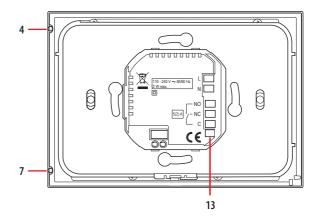
#### Dati tecnici

Alimentazione: 110 – 240 Vac , 50/60Hz

Assorbimento: 2 W max Sezione massima dei cavi:  $1 \times 1,5 \text{mm2}$  Temperature di funzionamento:  $5 - 40 \,^{\circ}\text{C}$ 

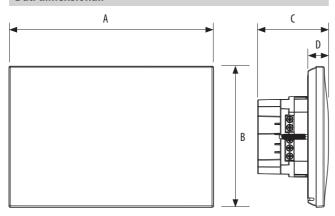
Setpoint temperature: 5-40 °C; incrementi di 0,5 °C

Tipo azionamento: 1BU Grado inquinamento: 2 Tensione impulsiva nominale: 4 kV


Dispositivo wireless conforme allo standard 802.11b/g/n, frequenza 2.4-2.4835 GHz, potenza di trasmissione < 20 dBm.

Protocollo di sicurezza WPA/WPA2.

Vista posteriore


12

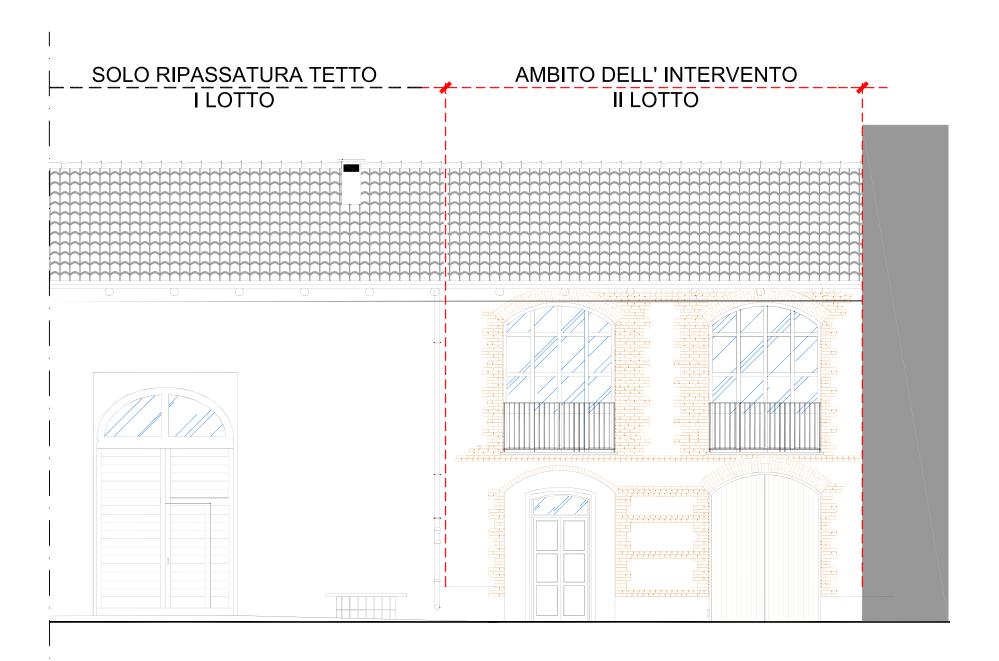
Vista frontale

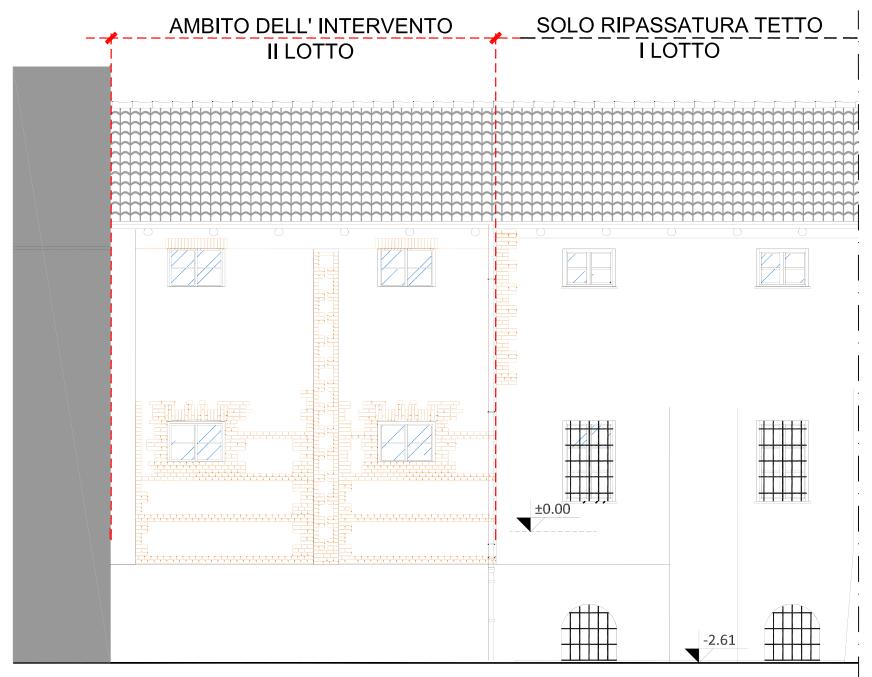


11 10 9

#### Dati dimensionali




| A      | В     | C       | D       |  |
|--------|-------|---------|---------|--|
| 126 mm | 87 mm | 43.6 mm | 12,6 mm |  |


#### Legenda

- 1. Display touch-screen
- 2. Visualizzazione temperatura/umidità
- 3. Indicatore funzionamento in modalità "Boost"
- 4. Tasto connessione WiFi
- 5. Tasti per impostazione temperatura
- 6. Attivazione modalità Boost
- 7. Tasto Reset (tenere premuto 10", riporta alle condizioni di fabbrica)
- 8. Indicatore modalità manuale
- 9. Indicatore riscaldamento acceso
- 10. Indicatore raffrescamento acceso
- 11. Indicatore "Termostato spento"; temperatura di 7 °C (antigelo) in funzionamento riscaldamento; temperatura di 35 °C (protezione termica) in funzionamento raffrescamento.
- 12. Indicatore connesione Wi-Fi
- 13. Morsetti di collegamento









PROSPETTO NORD